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a b s t r a c t

We study regulatory networks of N genes giving rise to a vector expression profile v(t) in which each
gene is Boolean; either on or off at any time. We require a network to produce a particular time
sequence v(t) for tA1, . . . ,T and parameterize the complexity of such a genetic function by its duration
T. We establish a number of new results regarding how functional complexity constrains genetic
regulatory networks and their evolution. We find that the number of networks which generate a
function decreases approximately exponentially with its complexity T and show there is a correspond-
ing weakening of the robustness of those networks to mutations. These results suggest a limit on the
functional complexity T of typical networks that is polynomial in N. However, we are also able to prove
the existence of a, presumably small, class of networks in which this scales exponentially with N. We
demonstrate that an increase in functional complexity T drives what we describe as a metagraph
disintegration effect, breaking up the space of networks previously connected by neutral mutations and
contrast this with what is found with less restrictive definitions of functionality. Our findings show how
functional complexity could be a factor in shaping the evolutionary landscape and how the
evolutionary history of a species constrains its future functionality. Finally we extend our analysis to
functions with more exotic topologies in expression space, including ‘‘stars’’ and ‘‘trees’’. We quantify
how the properties of networks that give rise to these functions differ from those that produce linear
functional paths with the same overall duration T.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Organisms evolve and adapt to their environment. Neutral
evolution allows organisms the freedom to explore their genotype
space while still maintaining a specific functional response
phenotype (Leigh, 2007). Here we investigate how the structure
of the neutral space and the robustness of the genetic regulation
are affected by the complexity of that function. We show how
increasing functional complexity can lead to a process of meta-
graph disintegration.

Differential equation models are commonly used to under-
stand genetic networks (Chen et al., 2000; Locke et al., 2005a,b,
2006). We utilise a Boolean approach in which both gene expres-
sion levels and time are discretized: Genes are on (1) or off
(0) and time is treated as proceeding in discrete steps. We
simplify the network interactions so that genes can only either
up- or down- regulate other genes or have no effect on them.
Despite the abstract nature of this approach it has been used to
provide high level models reproducing the qualitative behaviour

of the yeast cell cycle (Li et al., 2004; Davidich and Bornholdt,
2008) and the p53-Mdm2 gene circuitry (Ge and Qian, 2009),
while a variant of this model has been useful in predicting the
mutant phenotypes of Drosophilia (Albert and Othmer, 2003). It is
intellectually attractive in that it simplifies the state space in a
manner that many experimental scientists will find intuitive and
already utilise anecdotally. While noise can be incorporated into
these models they are otherwise numerically deterministic,
unlike nonlinear (chaotic) differential equations where the choice
of, e.g. time discretization, can affect the network behaviour at the
qualitative level. Boolean Networks have also been evolved for
greater robustness to noise (Mihaljev and Drossel, 2009; Szejka
and Drossel, 2010; Braunewell and Bornholdt, 2008). Our study
investigates the evolutionary constraints imposed by increasing
functional complexity without the need to perform explicit
evolutionary simulations.

Our model represents a gene regulatory network of N tran-
scriptional regulators which are represented by their gene expres-
sion patterns vðtÞ ¼ ðv1ðtÞ,v2ðtÞ, . . . ,vNðtÞÞAf0,1gN at some discrete
time t during a biological cell process. An interaction matrix
(which we also refer to as a network) A¼ ðaijÞ defines the
regulatory interactions between genes. The entry aij expresses
the strength of interaction gene j has on gene i. We restrict
ourselves to the case where aijAf$1,0,1g. So interactions either
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inhibit ðaij ¼$1Þ or promote ðaij ¼ þ1Þ gene i, or are absent. Given
a state vðtÞ and a network A then the state of the system at the
next time step is determined by hðtÞ ¼ AvðtÞ. viðtþ1Þ ¼ 1 if hiðtÞ40
(turns on), viðtþ1Þ ¼ 0 if hiðtÞo0 (turns off) and viðtþ1Þ ¼ viðtÞ if
hiðtÞ ¼ 0 (retains previous state). This is effectively a consensus
model in the presence of multiple regulatory inputs.

We define a biological function for a cell to be a path fvðtÞgTt ¼ 0

through the gene expression state space. Previous authors
(Ciliberti et al., 2007a,b; Martin and Wagner, 2008) have defined
networks which map the initial condition v0 to the fixed point v1
as belonging to the same phenotype. We denote this the uncon-
strained path duration (UPD) definition of a function. In essence
this definition equivocates different paths which explore different
areas of the gene expression space and many with different
durations T. We take the view that the UPD definition of a
function is not always biologically appropriate. For example let
us consider the two gene model of the p53-Mdm2 regulatory
network (Ge and Qian, 2009) depicted in Fig. 1A. The p53 gene is
activated in response to stress signals and consequently activates
Mdm2. Mdm2 then acts to degrade p53. Fig. 1B depicts in Boolean
form this key function of the p53-Mdm2 network. Any path
differing from the one depicted would fail to replicate the

required cell process. Under the UPD definition of functionality
any network which mapped the initial state in this trajectory to
the final one along any sequence of states would also be
considered as functional. However, most of these other trajec-
tories would fail to capture the observed dynamics of the p53-
Mdm2 system. The type of analysis we perform here was first
implemented on a biological path (Boldhaus and Klemm, 2010)
for a yeast cell cycle model (Li et al., 2004) with results that
differed significantly from those reported in Ciliberti et al.
(2007b).

We also examine the relationship between network topology
and the choice of path fvðtÞgTt ¼ 0 where we characterise a path by
its duration T. We consider this value to be a proxy measurement
of the complexity of a cellular response. By network topology we
mean the structure of those matrices A which define the interac-
tion between genes. Genetic point mutations correspond to
changes in matrix elements (Fig. 1C). We investigate how path
duration influences robustness and whether a path specific
phenotype definition infers different topological results from the
UPD definition of functional phenotype.

2. Results

2.1. Functional complexity constrains network topology

Here a biological function is a path fvðtÞgTt ¼ 0 through the state
space {0,1}N. Any network AAfN & N matricesjaijAf$1,0,1gg
attains a function fvðtÞgTt ¼ 0 if A maps vðtÞ-vðtþ1Þ for all
0rtrT$1. We aim to classify how biologically attainable certain
different classes of functions fvðtÞgTt ¼ 0 are in this space of Boolean
networks as we vary the path duration T. Let us define {A} to be
the set of matrices which attain fvðtÞgTt ¼ 0 and for jfAgj to be the
cardinality of this set. For convenience we also use the notation
jAj to mean jfAgj. Attainability is measured by the number of
networks that attain a function, jAj. We also refer to this value as
the number of networks which are functional with respect to the
function fvðtÞgTt ¼ 0. Attainability is dependent on the path duration
T and the path generation parameters we set. For genes up to
N¼10 we generated random sample paths using the two methods
outlined below and then identified all the networks which
attained each sampled path.

Sample paths were generated with two different algorithms.
Both start by drawing uniformly at random a vð0ÞAf0,1gN=0,
where 0 is the zero vector. The first algorithm then generates
vð1Þ by flipping each node (gene) with some probability y which
we set (we denote this the ymethod). These steps are iterated until
a self-avoiding path of length T is produced. Here y controls the
average number of flips in the expression state of a gene between
adjacent state vectors in the path and can be thought of as a speed
in that it controls the distance moved through the expression space
per time step. The second method starts identically by drawing a
vð0Þ but then randomly samples a matrix A0Af$1, 0, 1gN&N which
maps vð0Þ to some vð1Þ. Then for each subsequent step in the path
another At is drawn from the remaining set {A}, of matrices which
attain the path fvð0Þ, . . . ,vðtÞg, to generate a vðtþ1Þ which is again
self avoiding. We denote this the At sampling method. This method
tends to generate longer paths on average than the y path
generation method.

Using the y path generation method we sampled paths, extend-
ing their length T until jAj¼ 0. For the At sampling method, paths
were extended by sampling upto a 1000 matrices that would
extend the path for each t in a self-avoiding manner. If none of the
1000 sampled matrices successfully extended the path then
the algorithm would terminate. For both path generation methods
the mean number of matrices which attain a path fvðtÞgTt ¼ 0, jAj

Fig. 1. p53-Mdm2 Gene Regulatory Network Model and a schematic Metagraph.
(A) Boolean network model of the p53-Mdm2 gene regulatory network in both
network and matrix form. Pointed arrows are excitatory interactions (þ1) and the
flat headed arrows are inhibitory interactions ($1). (B) An example Boolean
biological function representing the p53-Mdm2 network’s response when p53 is
activated. p53 activates Mdm2 which inhibits p53 before degrading itself. (C) The
p53-Mdm2 wild type network (middle) and two 1-mutants (one interaction
difference) with their corresponding matrix forms. (D) A schematic of a metagraph
where the nodes represent networks and the edges exist between networks that
differ in only one interaction.
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decreases roughly exponentially with increasing T. Fig. 2A shows
the decline in mean jAj under the At method for various N, whereas
Fig. 2B is a representative example, with N¼10, of the decrease in
mean jAj for different speeds y. Hence we find that, as a function
becomes more complex, the number of network topologies which
can attain the function typically decreases exponentially with T.
We suggest later that evolutionary considerations may mean that
the number of topologies available to a single species could be
even more strongly constrained. It should be noted that increasing
T makes paths more difficult to attain under both methods and so
there are fewer samples of paths the longer they are.

The effect of changing the speed y is non-trivial and does not
relate monotonically to jAj. For instance jAj is higher for y¼ 0:9 for
T45 than both y¼ 0:5 and 0:7 (Fig. 2B). Each y in the first method
corresponds to a different set of (random) biological functions
from which we sample. There is a non-monotonic relationship
between y and the durations at which functions become unat-
tainable, which we call Tend (Fig. S1). This figure also indicates that
the mean attainable functional duration /TendS scales approxi-
mately linearly with N. Under our second pathgeneration method
/TendS'N2 (Fig. S2). These results suggest that the genome size
N corresponds to no more than O(N) or O(N2) gain in attainable
functional complexity for the types of random functions studied
here. Furthermore, it suggests that functions with durations O(eN)
should be vanishingly rare. However, we are able to construct
networks which possess a path whose duration Tend ' 2N=6 (see
Text S1). This is done by constructing a network that counts in
base 2, using N/6 digits. Thus a small proportion of networks are
capable of supporting anomalously complex functions.

2.2. Metagraph disintegration

For any two networks A,BAf$1, 0, 1gN&N , we can define a
distance between them as the sum of the number of the interac-
tions which differ, dðA,BÞ ¼

P
i,j1$daijbij where dab is the Kronecker

delta function. Thus if d(A,B)¼1 then the two networks differ in
only one interaction and a single point mutation can change one
network into the other (Fig. 1C). We define a metagraph the nodes
of which represent networks and where the edges connect net-
works which are exactly distance one apart (Fig. 1D). Thus any
connected component of the metagraph M can be traversed by
point mutations (i.e. single entry changes).

In Ciliberti et al. (2007a) it was found that the vast majority of
networks that take v0 to v1 are on one connected metagraph

component. This lead to the suggestions (i) that through gradual
topological changes (point mutations) any viable network could
evolve towards greater robustness (Ciliberti et al., 2007a) and
(ii) that gene circuits could innovate through access to many other
phenotypes by traversing long distances across the large dominant
connected metagraph component (Ciliberti et al., 2007b). However,
the metagraph of networks corresponding to the yeast cell cycle’s
functional path was discovered to be very disconnected (Boldhaus
and Klemm, 2010) where it was hypothesised that this may have
been due to the imposition of a greater number of constraints than
the UPD functions defined in Ciliberti et al. (2007b).

To investigate the effect of path complexity on the metagraph
we generated paths of varying durations and found that the
number of metagraph components connected by neutral muta-
tions is dependent on the path duration T (Fig. 3). As T increases
so does the number of connected components. Indeed, a distinct
pattern emerges in which the number of connected components
first increases before decreasing as T increases further. The
metagraph literally disintegrates. The connected metagraph

Fig. 2. An exponential decrease in the number of available networks with increasing duration. On both plots the x-axis shows the duration T of the path and the y-axis the
mean number of networks jAj which attain a path of duration T. In both plots jAj decreases approximately exponentially with T. Note that for both path generation
methods, as T increases fewer samples are available to compute jAj. (A) 1000 sample paths were generated using the At sampling method for every 5rNr10. (B) 1000
sample paths were generated using the y sampling method for N¼10 and at various speeds y. The error bars in both plots are a single standard deviation over

ffiffiffi
n

p
where n

is the number of paths of that reached that length.

Fig. 3. The number of metagraph components depends on the path duration. The
x-axis shows the path duration T. The y-axis is the mean of the log10 of the number
of connected components log10ðMcÞ for 1000 (100 for N¼8) sampled paths using
the At sampling method. The initial increase in the number of connected
components with increasing T creates a disconnected (neutral) evolutionary
landscape. The decrease in the number of components as T increases further
occurs as some components can no longer cope with the demanded functionality.
Thus the evolutionary choices made previously constrain a species’future func-
tionality. The error bars are a single standard deviation over

ffiffiffi
n

p
where n is the

number of paths of that reached that duration T.
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components are typically of comparable size so no single domi-
nant component exists but the number of components can vary
over many orders of magnitude as the duration of a function
increases. Organisms that end up on these different metagraph
components have experienced what we choose to describe as
topological speciation, in relation to their network interactions.
Even though they are all producing the same functional response
their networks cannot interchange via neutral mutations alone.

For all paths where T¼1 we offer a simple proof that there
can only be one connected component of the metagraph. Let the
path be fvð0Þ,vð1Þg and {Ai} be the set of all row solutions for row
i (node i). Consider the case when við0Þ ¼ 0 and við1Þ ¼ 1. This
constraint implies that for any row, rAAi the value of
hið0Þ ¼

PN
k ¼ 1 rk vkð0Þ40. Note that the row of all ones 1 always

satisfies this constraint. Furthermore for any rAAi one can through
point mutations map r to 1 by changing each $1 and 0 entry into
1. Each intermediate row will satisfy the constraint and so every
row in Ai can reach every other row via point mutations. Similarly
for the case við0Þ ¼ 1 and við1Þ ¼ 0 all rows are connected via $1. It
is clear that for the cases við0Þ ¼ 0, við1Þ ¼ 0 and við0Þ ¼ 1, við1Þ ¼ 1
the same arguments hold. Therefore, for any two matrices which
attain a path fvð0Þ,vð1Þg, their rows can be mapped onto each
other’s through point mutations and thus they lie on the same
connected component. Therefore, the metagraph is connected for
any path of the type fvð0Þ,vð1Þg. A corollary to this result is that the
metagraph is connected for any path of the type fvð0Þ,vð1Þ,vð1Þg
where we have simply specified vð1Þ to be a fixed point.

This simple result goes someway to explaining the differences
between our metagraph disintegration result (the metagraph typi-
cally has many connected components) and the large connected
component found in Ciliberti et al. (2007b) using UPD. Here UPD
includes the ensemble of all paths (of all durations T) from vð0Þ to
v1. As demonstrated above the path fvð0Þ,vð1Þ,vð1Þg where v1 ¼ v1
produces a connected metagraph for our path approach. It will also
be large relative to the number of networks for longer duration
paths. Thus any connected components corresponding to longer
paths which are within a distance one of the fvð0Þ,vð1Þ,vð1Þg
metagraph are then connected to each other. We hypothesise that
the connected metagraph for the fvð0Þ,vð1Þ,vð1Þg path may form a
backbone to connect most of the components from other paths.
Small, disconnected components would then necessarily corre-
spond only to longer duration paths.

2.3. A trade-off between functional complexity and mutational
robustness

The mutational robustness, RM of a network A with respect to
fvðtÞgTt ¼ 0 is defined as the proportion of 1-mutants of A which also
attain the function fvðtÞgTt ¼ 0. This is equivalent to the degree of A
in the relevant metagraph M of fvðtÞgTt ¼ 0. It was reported in
Ciliberti et al. (2007a) that a broad distribution of mutational
robustness exists in networks sampled from any of their meta-
graphs. However, as different networks are utilising different
paths of different duration then a duration dependency in RM
could explain the broad distribution. As Fig. 4 demonstrates there
is a strong negative correlation between T and RM. So we can see
that when duration T paths are taken to determine the meta-
graphs rather than the UPD approach we see an explicit negative
correlation between a network’s mutational robustness and path
duration. We conclude that in this model a trade-off typically
exists between mutational robustness and functional complexity.

2.4. The correlation between mutational and noise robustness

A small amount of noise can be represented by the random
flipping of a node’s state. A network can be considered robust if

the perturbation is corrected—the desired path is immediately
recovered, despite the perturbation from an initial condition. We
measure the robustness to noise of a network A which attains a
path fvðtÞgTt ¼ 0 by the proportion of one bit flip perturbations from
vð0Þ which recover the remaining path under A. So the noise
robustness, Rn, is the fraction of the N neighbouring states of vð0Þ
that are mapped by A to vð0Þ or vð1Þ.

It has been reported in Ciliberti et al. (2007a) that a strong
correlation exists between noise and mutational robustness. This
correlation was also reported in evolutionary experiments on
Boolean networks (Mihaljev and Drossel, 2009). However, we find
that the strength of this correlation decreases with increasing T
(Fig. S3). As the UPD approach allows an ensemble of paths of
different duration it is possible that sampling favours shorter
trajectories, which have a large number of solutions. This could
dominate the sampling process and explain the stronger correla-
tion reported in Mihaljev and Drossel (2009); Ciliberti et al.
(2007a).

2.5. Multi-functionality

Up to this point we have restricted our analysis to paths of the
form fvðtÞgTt ¼ 0. It is natural to ask what are the properties of
functions, which are not single paths? We investigated the effect
of requiring multiple paths/functions to be simultaneously satis-
fied and the effect of creating star and tree-like functional paths
as depicted in Fig. 5. The star multi-functional form will naturally
increase its noise robustness and the tree form is conceptually
somewhere between the star and single path functions. Formally
a multi-functional path of m functions has the form
ffvkðtÞgTkt ¼ 0g

m
k ¼ 1. In this section the duration T of a multi-function

is defined to be
Pm

k ¼ 1 Tk. It is worth reporting that for disjoint
multi-functions (Fig. 5B) all the results are nearly identical to
those reported in relation to single paths (Fig. S4). However, this
is not the case for the tree and star-like functions.

Star paths of the form ffvkð0Þ,v(ggmk ¼ 1 where v( is the same
point in state space for each k (Fig. 5D) were generated at random
under different y. Paths of this form are always attainable and
only ever have one connected metagraph component, which
follows similarly from our proof for single paths of duration
T¼1. The mean total number of matrices which attain a path

Fig. 4. Mutational Robustness and path length are negatively correlated. The
x-axis shows the path duration T. The y-axis is the mean degree from 100 sampled
paths normalised by the maximum degree of 2N2 using the At sampling method.
For each path at each length T 100 networks were sampled to estimate the mean
degree for that path. The error bars are a single standard deviation over

ffiffiffi
n

p
where

n is the number of paths of that reached that duration T.
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decrease with T (Fig. 6A) but at a much slower rate of decline than
was found for single paths and multiple disjoint paths. Further-
more, mutational robustness was still found to decrease as a
function of T, although again more slowly (Fig. 6C), whereas noise
robustness increases consistently towards one (Fig. 6D). Interest-
ingly the correlation between mutational and noise robustness
remains much higher on average, at around 0.5 (Fig. 6B).

The tree-like paths are formed using the y method by fixing a
branching number b and then forming a star with b branches into
that point in the state space. Then one of the tips of this star is
taken (a state with no incoming states) and b new branches are

generated for that tip and so on creating multi-functional paths
like those depicted in Fig. 5C. Here the branching number has a
curious effect on all the quantities of interest. In effect one sees a
step like effect imposed on previous results. The number of
matrices which attain a path jAj and the mutational robustness
Md both still decrease as a function of T. However, a b duration
wait is introduced where these values fall at a lower rate as each
new star is formed before taking a larger decrease as a new star is
started (Fig. 6A and C). The correlation between noise and
mutational robustness decreases in a similar fashion (Fig. 6B).

Fig. 5. Examples of multifunctions. These are state-space directed graphs of the
different types of multi-functions studied. Nodes represent gene expression states
and the arrows indicate which state is mapped to which. (A) Single function.
(B) Multi-function with three disjoint single paths. (C) Tree multi-function with a
branching number of two. (D) Star multi-function with five branches.

Fig. 6. Single path, star and tree-like multi-functions. In all the plots the x-axis shows the path duration T. 100 single paths, star-like paths and tree-like paths with b¼3
were generated for N¼7 and y¼ 0:1. The error bars are a single standard deviation over

ffiffiffi
n

p
where n is the number of paths of that reached that duration T. (A) The mean jAj

(y-axis) declines exponentially for the single path but much more like a power law for the star multi-function. The tree falls somewhere in between with a general
exponential fall which is slightly shallower than exponential as each point fills its branches. (B) The mean correlation between mutational robustness and noise was
estimated from 100 sampled matrices for each function. The star retains a higher correlation than the single path and again the tree falls in between with a reduction in
correlation as each unextended branch tip is extended. (C) Estimated from 100 sample matrices per function, the normalised mean mutational robustness /RMS=2N2 falls
in all cases but most slowly for the star. The tree function falls at two rates depending on whether a new tip is being extended. (D) Estimated from 100 sample matrices per
function, noise robustness increases towards one for the star while falling for the single path. The tree sees a fall when a tip is extended and then a rise as more branches
are added to that tip.

Fig. 7. The connectedness of the metagraph for tree-like multi-functions. The
x-axis shows the path duration T. The y-axis is the mean of the log10 of the number
of connected components, log10ðMcÞ for 1000 sampled tree-like paths at different
branching numbers (b¼1, 2, 3 and 4). y¼ 0:1 was used for the path sampling
method. The error bars are a single standard deviation over

ffiffiffi
n

p
where n is the

number of paths of that reached that duration T. A step like pattern emerges with
the number of components increasing when a branch is extended and then
decreasing as more branches are added making the multi-function more star like.
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The noise robustness Rn decreases as each new tip is extended but
recovers somewhat as more branches are added (Fig. 6D).
A similar effect occurs in relation to the number of metagraph
connected components as is shown in Fig. 7. These results suggest
that certain types of multi-functionality, particularly those which
are star like, can decrease the breakup of the available neutral
space and that biological functions of this type might exhibit a
much weaker tendency to speciate.

3. Discussion

We have identified the duration T of a function, or equivalently
the total sum duration for a multi-function as the key factor which
influences its attainability, the connectedness of its metagraph and
the robustness of those networks which attain the function. These
results highlight the crucial differences that arise when one adopts a
path definition of functionality as opposed to UPD, which fixes only
its start and end points. We believe that in many cases, particularly
for genetic functions involving timing (circadian networks, cell cycle
etc), our definition of functionality is most appropriate.

The connectedness of the metagraph may play an important
role in the evolution of biological function. Consider, for example,
populations of genetically identical organisms exposed to constant
environmental stress over many generations. If UPD is adequate to
define a biologically fit function the separate populations will be
free to traverse more of the network space through neutral moves.
Different genetic populations will arise but they will still be able to
mutate (back) into each other. However, if biological fitness
requires fixed duration functions the metagraph is more likely to
become disconnected. Then different populations are likely to find
themselves on separate islands of the metagraph after evolving
the necessary function. All further mutational evolution is now
constrained by the genetic structures adopted in each population.
This topological speciation effect is irreversible under neutral
mutations and dictates that, as more functions are attained,
different population strains will be unable to access all the same
future functions. This is evident from the decrease in the number
of connected components after some peak (Fig. 3). Thus future
innovation is topologically constrained by our evolutionary past.

It should be noted that we examine only the metagraph of
neutral point mutations. One benefit of more aggressive mechan-
isms for genetic alteration, such as sex, would be to overcome
historically imposed genetic constraints that may isolate an indi-
vidual from a fitter metagraph component. We also note that we
have only examined the case where interactions between genes
have discrete weights (i.e. aijAf$1,0,1gÞ. Allowing these weights to
be real or arbitrarily finely discrete would certainly affect our
results in relation to metagraph connectivity. Indeed it may be that
the metagraph will typically become connected in this case.

We have shown that the number of available topologies
decreases exponentially as the functional complexity increases.
Furthermore the mutational robustness will also typically decrease.
These two features suggest that for any fixed number of genes a
limit exists to the system’s attainable functional complexity, and
that exceeding this limit may prove unstable due to the increased
mutational vulnerability of any specific networks. We did construct
networks with anomalously (O(2(N/6))) long functions and, consis-
tent with the above trend, these are fragile to any mutation.

A form of multi-functionality, under the UPD definition,
(Martin and Wagner, 2008) has been proposed elsewhere. Here
pairs of disconnected start-endpoint functions were simulta-
neously combined to produce a single multi- (bi-) function.
Because UPD is still employed this is still somewhat different to
a similar fixed duration function, which might correspond to a
function involving a pair of disconnected paths, each with

duration Tk¼1. As discussed above the properties of these disjoint
functions were very similar to those involving a single connected
path with the same total duration. Indeed, the reduction in
mutational robustness in going from mono to bi-functions
reported in Martin and Wagner (2008) can be understood in the
context of the present work by the fact that the minimum
duration T increases from 1 to 2.

We find that star and tree-like functions have markedly different
properties. Star-like functions typically have higher mutational
robustness. We see also that as the branching number increases
we begin to lose the metagraph disintegration effect present for
single functional paths. This implies that the exact structure of a
biological function influences the accessible evolutionary trajec-
tories. It is impractical to analyse every possible kind of functional
path structure, those we have investigated form a very selective
subset. However, microarray data has been used to define the key
biological function of the yeast cell cycle (Li et al., 2004).

Our findings have implications for how functional responses
might be studied in biology. We have shown that different
functional topologies have different robustness and evolvability.
Therefore, in experiments where these properties are crucial we
suggest careful examination of the function’s topology.

Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version, at doi:10.1016/j.jtbi.2011.05.006
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