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1 Methods

1.1 Numerical Simulations

Simulation of the hybrid projection model involves solving the equations of motion Eqs. 2 & 3

(main text) in both 2D and 3D.

For the 2D simulations each individual selects σ nearest visible neighbours; here we define

a member of the swarm as visible if it is possible to draw an unbroken line of sight from the

individual to any point of its neighbour. If there are fewer than σ visible neighbours for an

individual it uses the orientation information from all visible neighbours, this has no major

effect since this component of the velocity is normalised upon its inclusion in Eq. 3.

These were solved iteratively using an algorithm written in C++. The initial conditions for

the N individuals were that they started with random positions in a square region of space of

area N2 (in units of the size of each individual squared) with randomly orientated velocities.

So as to eliminate transients associated with these arbitrary initial conditions the swarms are

allowed to pre-equilibrate. The pre-equilibration period was at least 25,000 time steps for sim-

ulations contributing to the phase planes, such as Fig. 2b,c, and for the simulations contributing

to swarm scaling results, such as Fig. 2d, where the size of the swarm was sometimes much

larger. The pre-equilibration period was always longer than the corresponding correlation time,

as shown in Fig. 2f (except when φp = 0, when the swarm anyway fragments and disperses to

infinity).

Scaling results, as shown in Fig. 2d, were averaged over 50,000 timesteps. Phase planes, as

shown in Fig. 2b,c,e,f and Fig. S16,S17, show results for 861 different locations in the parameter

space, each being the average result of four simulations of 100,000 time steps at that particular

combination of φp and φa.

The angular size presented to individual i by its neighbour j depends on the physical size
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of the individual b and vector connecting them rij . For the isotropic individuals considered in

most of the article this is defined to be

∆θ = 2 arctan

(
b

2|rij|

)
(1)

which approaches ∆θ = b/|rij| for r � b. For anisotropic individuals (Figs. S16,S17,S18 and

Supp.Movs, S5-S9, only) the angular size of the jth individual depends on the angle ζij between

its direction of motion, along vj , and the line of sight of the ith individual to it, along rij . If

the aspect ratio is a ≥ 1 and the long axis is orientated at an angle ψ to the direction of motion

(ψ = 0 is long-and-thin, ψ = π/2 is short-and-fat) the angle subtended at ri is defined to be

∆θ = 2 arctan

(
b̃

2|rij|

)
(2)

with the apparent physical size in this orientation given by

b̃ = b
(
sin2(ζ + ψ) + a2 cos2(ζ + ψ)

)−1/2
(3)

See Fig. S1. This reduces to b̃ = b when a = 1, as required,

There are several possible refinements that can be made to our model. The first of these

would be to include short ranged repulsive interactions, although we expect this to have less

effect in the low density (universal) regime of most interest to us here; this is explored in more

detail later in the SI. Secondly one might relax the assumption that the velocity of the individuals

is constant. It would also be possible to introduce a “blind angle” behind each individual from

which it cannot obtain any information, similar to that employed in previous models [1]. This

has little qualitative effect on the behaviour of the model, as shown in Supp.Movs. S8,S10,S9.

Another possible refinement would be to introduce an effective bird size in order to account

for how individuals may assign continuity between dark regions. This could arise from a cog-

nitive or visual blurring of each individual. Such blurring is quite natural, given that individuals

rarely have very sharp edges (consider, for example, the feathers on a bird’s wingtips). There
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Figure 1:(SI) The apparent physical size b̃ of an anisotropic individual divided by its (maximum)
length b. The individual’s velocity is orientated at an angle ζ to the line of sight from the
observer. The blue curve represents a long-and-thin individual, with long axis parallel to its
velocity (ψ = 0) and aspect ratio a = 5. The red curve represents a short-and-fat individual,
with long axis orientated at an angle ψ = π/2 to its velocity and aspect ratio a = 2.

is also the fact that vision has a limited angular resolution. In this case space could be thought

of as being discretised into a number of angular “bins” and an observer must assign each bin as

full or empty depending on whether or not it contains (at least) one bird. Here the physical bird

size would naturally be replaced by the bin (blurring envelope) size. Given these issues it may

be wise to regard the bird size in our model as not necessarily being identical to any (arbitrary)

physical size. This refinement could explain the (rather small) numerical discrepancy between

the quantitative value of the opacity seen in Fig. 2c,d (our model) and Fig. 3b,d,e (data). An-

other attractive feature of our model is its relative robustness to physical limitations on visual

resolution, both temporal and spatial (angular).

1.1.1 3D implementation

The 3D simulations were produced using the same equations of motion as the 2D model and

employed an algorithm written in C++. A minor difference to the 2D implementation is that

visible neighbours were defined using a Delaunay triangulation. The Delaunay triangulation
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leads to a natural conception of neighbours due to it being the dual graph to the Voronoi con-

struction, in which all points nearer to a data point than any other data point belong to that data

point’s Voronoi cell, hence neighbours defined through the Voronoi construction are those that

share edges between their Voronoi cells and are in some sense ‘closer’ than those cells that do

not share Voronoi edges.

The initial conditions for the N individuals is that they were placed randomly in a cube

with a target density of 0.01 individuals per unit cube (in units of the individual radii). A pre-

equilibration period of 20,000 time steps and measuring period of 80,000 time steps with 5

repeats at each parameter value were used for the 3D scaling results shown in Fig 2d (main

text). All other results shown in the main text are for 2D.

Individuals are treated as isotropic bodies that obscure a line of sight from any other in-

dividual that passes through it. This results in the projection of (dark) circular caps onto the

view of other individuals, treated as a unit sphere; the interior of any of these caps represent

directions where an individual is unable to trace a line of sight to infinity (the light sky). These

caps can overlap, leading to a patterning of the surface of each spherical view into “dark” and

“light”, see Fig 2(SI). The spherical cap projected by an individual j onto i’s view is defined

by a solid angle given by Γ = 2π
(
1− R√

1+R2

)
, where R = |rij| is the distance between the

individuals. Hence Γ defines the angular size of the projection in 3D. This is equivalent to an

individual j being viewed as a disk of unit radius with its normal always pointing towards the

focal individual i. The boundaries of the occluded regions on the surface of the ith individual

are then unions of arcs of circles in 3D, collectively the set of contours Ci. The projected input

to the equation of motion [3] is the following generalisation of Eq [1] to 3D

δi =

∫
{Ci} r̂dl∫
{Ci} dl

(4)

where each integral is over infinitesimal line elements dl that trace along the curve(s) Ci sepa-
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Figure 2:(SI) A sketch showing the projected views of a number of individuals in 3D analogous
to that shown for 2D in Fig. 1(main text). The dark shaded regions represent the set of normal
directions that correspond to lines of sight that intersect another individual. The vector δi is
displayed as a blue arrow for each individual i. It is given by Eq (4)SI and is essentially the
average normal orientation of the boundary of the shaded region(s).

rating the “dark” and “light” regions on the surface of a unit sphere and r̂ is the outward pointing

unit vector at each point alone those curves.

1.2 Data Collection

Data on flocking starlings for Fig. 3a-d was collected from three separate sites during Autumn

2011, these were.

Strumpshaw, Norfolk, UK. GPS coordinates 52.35515, 1.28122. Date 24/09/2011 Time 17:56

(sunset -66 min).

Glastonbury, Somerset, UK. GPS coordinates 51.157052, -2.73676. Date 05/10/2011 Time

16:48 (sunset -110 min).

Brighton, East Sussex, UK. GPS coordinates50.816544, -0.136691. Date 10/10/2011 Time

18:10 (sunset -15 min).

Brighton, East Sussex, UK. GPS coordinates50.816544, -0.136691. Date 14/11/2011 Time

15:40 (sunset -7 min).

Brighton, East Sussex, UK. GPS coordinates50.816544, -0.136691. Date 14/11/2011 Time
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16:10 (sunset -37 min).

A Panasonic HDC-SD600 camera was used to collect 1920 × 1080 video at 50 progressive

frames per second. Frames from the video were analysed as individual images. The video

sequences were discarded if they had any obvious obscuring of the flock, not all of the flock

was visible, or the background was insufficiently monotone. Examples of collected footage is

shown in Supp. Mov. S1, S2.

Images selected for analysis in Fig. 2e were all those returned on the first two pages of

a Google image search for the phrase “starling flock” performed on July 27 2011. Images

were discarded only if they didn’t show a starling flock, had obviously been doctored in some

manner, or were composite images. The image number shown on the horizontal axis of Fig. 3e

corresponds to the ordered number in which that image was returned in the search. The first six

of these images are fairly representative and are shown in Fig. S3. We believe that the lack of

any subjective bias in the selection of these images of flocks, of various sizes under different

light conditions, represents a rigorous test of our hypothesis that these flocks adopt a state of

marginal opacity, see Fig. 3e.

1.3 Image Processing

We don’t attempt direct identification of individual birds. Instead each image was converted

to an 8-bit greyscale and connected regions of the flock were outlined by eye so as to exclude

obvious foreground objects that weren’t birds (if any) and regions of empty sky outside the

flock (if any). For images that include more than one connected flock region the opacity was

computed as the average of the distinct regions of the flock, weighted by their relative size in

pixels. All pixels, with greyscale level gi, i ∈ [1, n] within the outline were considered to be

within the flock. The greyscale distribution was analyzed to yield the average ḡ = 1
n

∑n
i=1 gi,

maximum gmax and minimum gmin pixel greyscale levels (low numbers are darker). The opacity

8



1 2 

3 4 

5 6 

Figure 3:(SI) The images used to construct the corresponding first six the data points in Fig. 3e.
These flocks were all found to be marginally opaque.
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is then given by

Θ′ =
gmax − ḡ

gmax − gmin
= 1− ḡ − gmin

gmax − gmin
(5)

This methodology is simple and has the advantage that it introduces no subjective bias into

the image analysis. The error bars shown in Fig 3b,d,e are computed by using the greyscale

levels g− and g+, respectively the pixel levels at the ε/2 and (100− ε/2) percentile of the pixel

greyscale distribution, where here we choose ε = 5%. This was then used to compute the

corresponding upper (Θ′+) and lower (Θ′−) bounds for our estimate of the opacity

Θ′− =
g+ − ḡ

g+ − gmin
Θ′+ =

gmax − ḡ
gmax − g−

(6)

This can be motivated by the heuristic argument that the most extreme 5% of pixels would be a

reasonable alternative definition of sky/bird, mitigating the effects of any outlying pixels.

1.4 Camera Calibration

We calibrated our camera, and method of image analysis, by creating images of black disks

randomly arranged on a white background with a known ratio of black to white pixels. This

binary image is analogous to our images of birds against sky. This allows us to adjust the feature

(circle) size in a controlled manner. By taking pictures of these images we can establish how

accurately the camera is measuring the average greyscale, being the fraction of black pixels

(bird) in the image, and hence the (flock) opacity. Importantly the disk (bird) sizes can be

adjusted so that the size of these features falls below the pixel resolution of the camera, see

Fig. S4. We find that the camera measures the opacity reasonably accurately, even when the

feature size is below the single pixel resolution, as is often the case for the public domain

images shown in Fig 3e.
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Figure 4: (SI) Opacities estimated from images consisting of black disks with different sizes.
The opacity was estimated using Eq (S5 SI). The exact value of the opacity is shown as the solid
black line.

1.5 Image Calibration

The images used in Fig 3e were collected from the public domain and had all been compressed

using the jpeg compression algorithm. In order to assess the effect of this compression on the

values of the opacity Θ′ we ran our images of starling flocks through the jpeg compression

algorithm, compressing them down to a size less than even the smallest file sizes in our public

domain data set. By analysing the apparent opacity before and after compression we find that

the measured opacity is largely unaffected by compression, see Fig. S5.

1.6 Cross Correlation

The acceleration of the centre of mass of the flock is used in constructing Fig 3c and is calculated

by taking the coordinates of the centre of mass of the flock relative to a fixed point of reference,

and lengthscale, within the image; in this case the tip of the old pier at Brighton. Each frame
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Figure 5:(SI) The differences in the calculated opacity after various levels of jpeg compression
and size reduction. The error bars are calculated using Eq (S6).

yields a set of coordinates which, together with the known time step (inverse frame rate) is used

to compute a scaled acceleration a(t).

The cross correlation function between the acceleration relative to the mean δa(t) = a(t)−

〈a〉 and the opacity relative to the mean δΘ′(t) = Θ′(t)− 〈Θ′〉 shown in Fig 3c is then

C(δt) =
〈δa(t)δΘ′(t+ δt)〉√
〈δa2〉〈δΘ′2〉

(7)

Here a positive δt implies that the acceleration leads the opacity. This is as expected, as the

flock needs first to move in order to change it’s appearance, but it does show that a strong yet

transitory signal indicating a change in direction is carried by the opacity of the flock.

The error bars in Fig 3c are the standard error in the estimate of the mean at each time point.

1.7 Defining the density

We define density as
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ρ = N/(2〈|rij|2〉) (8)

where the average is over all pairs of individuals. This gives results which are qualitatively

indistinguishable with those obtained by instead defining the density using the largest distance

between any two individuals as the relevant swarm size.

The half time of the density autocorrelation function shown in Fig 2d is defined by

〈δρ(t)δρ(t+ τρ)〉
〈δρ2〉 =

1

2
(9)

with δρ(t) = ρ(t)− 〈ρ〉 and 〈δρ2〉 = 〈(ρ− 〈ρ〉)2〉 = 〈ρ2〉 − 〈ρ〉2.
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2 Supplementary Results

2.1 Projection term leads to flock cohesion

In order to test how flock cohesion is controlled by the presence of the projection term we

performed a number of simulations, first with a very small, but non-zero, projection term and

then without it. The maximum distance between any two particles within a flock, Rmax was

recorded as a function of time, see Fig. S6. Rmax gives a upper bound for the flock diameter,

providing a useful metric to demonstrate the effectiveness of the projection term in producing

bounded flocks; for an unbounded flock the maximum flock diameter will continually grow over

time. Fig. S6 shows that the maximum linear size Rmax of flocks grows without bound when

φp = 0. In this case the flock fragments into disconnected clusters that perform independent

random walks, hence Rmax continually increases (black traces). However, even a very small

contribution from the projection term, here φp = 0.03, is enough to prevent this from happening

(red traces). This result is insensitive to the size of the flock and also to the precise choice of

parameter values.

2.2 Anisotropic nearest neighbour distribution

The form of the nearest-neighbour distribution shown in Fig. S7 is in close agreement with a

similar anisotropy observed in birds [2, 3] and fish [4, 5]. We believe that this is a consequence

of the nature of the projection term, which makes it less likely for an individual to orientate

itself toward its relatively large and dark (and hence edge-less) nearest neighbours.

2.3 Radial Density of nearest neighbours

The radial density in the immediate vicinity of an individual show a clear peak, see Fig. S8.

This is very similar to observations of real animals [5, 6].
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Figure 6: (SI) Maximum flock diameter for flocks containing (a) N = 100, (b) N = 500, (c)
N = 1000 and (d) N = 1500 individuals generated by computer simulation of the hybrid
projection model with φp = 0.03, φa = 0.8 and φn = 0.17 (red), the same values as those used
in Fig.2b in the main text, and in the absence of projection φp = 0.0, φa = 0.83 and φn = 0.17
(black).
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Figure 7: (SI) Probability density P (χ) for the angles (χ) between the velocity of (all) of the
ith individuals, parallel to vi, and the vector rik to each of its 4 nearest neighbours, labelled
by the index k, as in the text. The peaks at χ = ±π/2 indicates that nearest neighbours are
preferentially orientated to the sides of the individuals, rather than in front or behind. These
results were gathered for a swarm of N = 100 isotropic individuals over 10,000 time steps with
φa = 0.85, φp = 0.05.
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Figure 8: (SI) Average radial density of neighbouring birds relative to an individual (at r = 0)
for φa = 0.85 and φp = 0.05. The density is per unit area, in units where the size of each
isotropic individual is unity.

2.4 Effects of steric interactions

We can also introduce a short range repulsion/steric interaction to the model. Whenever the

distance between two individuals drops below a threshold they then have a new behavioural

update rule in which they simply move away from neighbours so as to avoid collisions. Such a

steric interaction has little effect on the behaviour of the model at the qualitative level. This is

because the projection term already acts to prevents the flocks becoming too dense due to the

fact that it steers individuals away from opaque (dense) directions. In order to investigate the

effects of this we introduce a steric interaction term in which birds fly away from their nearest

neighbours if they get within two length units. The order parameter, α, linear flock length,

Rmax, and opacity, θ, for such a flock change little and are shown in Fig. S9.
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Figure 9: (SI) a) The order parameter, α, b) linear flock length, Rmax, and c) opacity, θ, as a
function of the parameters φp and φa for a flock of 100 isotropic individuals which repel each
other when within 2 length units. Each small colored square (point), corresponding to a pair of
parameter values {φa, φp}, is an average value over 400,000 timesteps forN = 100 individuals.

2.5 Effects of anisotropic vision for individuals.

Birds and other flocking animals do not have fully isotropic vision, e.g. birds cannot see what is

directly behind them. In order to study how this might affect the behaviour of the model and the

emergence of marginal opacity we introduce a blind angle (γ) behind each individual, outlined

in Fig. 10. We first define ‘behind’ as the opposite direction to the velocity (hence (arg(vi)+π)

for individual i). Any boundary falling within the angular region (arg(vi) + π)± γ/2 (shaded

in blue on Fig. 10) will not contribute to the projection term.

For values of γ < 4π/5, well in excess of what is realistic, marginal opacity emerges ro-

bustly and flock cohesion is unaffected. This is shown by the values for opacity (θ) and swarm

size (Rmax) in Fig. 11, where the standard deviations in these values can be seen to be rela-

tively small. As γ becomes unphysically large (γ > 4π/5) the swarm opacity and density are

more substantially affected. While the flock now remains strictly cohesive it becomes possible

for (groups of) individuals to transiently move directly away from the bulk of the flock only

rejoining it when they have rotated sufficiently to pick up the flock again. This rotation can
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be slow if there are a substantial number of individuals in any such breakaway group. When

this is the case, the maximum separation between two individuals in the swarm becomes a poor

measure of the local density, as it is sensitive to outliers that have transiently lost contact with

the remainder of the swarm, hence we also show the variation of the average nearest neighbour

distance Rmin in Fig. 11.

In fact it is probably more physically realistic that the bird ignores all sensory input coming

from within the blind angle, i.e. excluding also the co-alignment term. In this case we obtain

slightly more dense flocks that are able to remain cohesive and marginally opaque for a greater

range of γ, see Fig. 12.
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Figure 10: (SI) Diagram detailing the how the bind angle (γ) corresponds to the angular re-
gion directly behind an individual (here i with velocity vi) over which the boundaries do not
contribute to the projection term (shaded area). In this example the projection term given by
Eq. 1(main text) would not include θi,5−8

.
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Figure 11:(SI) a) Opacity (θ), b) swarm size (Rmax) and c) average nearest neighbour distance
(Rmin) for swarms of N = 100 individuals with varying blind angles (γ) within which individ-
uals do not contribute to the projection term in Eq [3](main text). The model parameters are
φa = 0.8 and φp = 0.03, to match those used in Fig. 2b(main text). Results show the mean and
standard deviation over 50,000 time steps following a 6000 time step equilibration period.
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Figure 12:(SI) a) Opacity (θ), b) swarm size (Rmax) and c) average nearest neighbour distance
(Rmin) for swarms of N = 100 individuals with varying blind angles (γ) within which contri-
butions to both the projection term and co-alignment term are ignored. The model parameters
are φa = 0.8 and φp = 0.03, to match those used in Fig. 2b(main text). Results show the mean
and standard deviation over 50,000 time steps following a 6000 time step equilibration period.
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3 Comparison with metric based models

In order to highlight some of the advantages of a global, metric free model, we compared it to

a standard local, metric based model for flocking. The choice of model is somewhat arbitrary;

any local repulsion/orientation/attraction model could have been chosen. Because of this we

chose to make a simplest case model that includes the core of many established metric models

capable of creating coherent flocks [7, 8].

We chose a model in which each particle has three interaction radii, a repulsion from all

particles at a distance r < rr, co-alignment with all particles in the region rr < r < ro, and

attraction to all particles in the region ro < r < ra. Each particle moves with a constant velocity,

v = 1, and updates its direction and position every timestep, which have length dt = 0.1. Our

simulation of this model was coded in C++ and employed simulation parameters rr = 1, ro =

10 and ra = 15 for the repulsion, orientation and attraction ranges respectively, shown as the

red (N = 300) and black (N = 100) traces in Figs. S14, S15 and all traces in Fig. S13. Where

it was necessary to modify these parameters the green trace on Figs. S14, S15 corresponds to

N = 300, rr = 1, ro = 17 and ra = 26. The results from this simple attraction-repulsion model

are compared with our hybrid projection model in Figs. S13, S14, S15. In order to define an

opacity in Fig. S15 the individuals size must be defined. We take this as 0.25 in the same units.

This value is chosen because the STARFLAG data shows the nearest neighbor spacing is often

around 1m, and the length of a starling is around 0.25m [9]. So there is a factor of 4 between the

two units. The dashed lines in Fig. S14b are the diameter of the orientation zone 2ro, which it

is appropriate to compare with Rmax, the maximum distance across the flock. This, along with

the change in units leads to a factor of 8 scaling from ro = 10 and ro = 17, respectively, to the

value given in Fig. S14b in bird length units.

Although this is an arbitrary choice of model in order to test out hypothesis against, the
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results will be the same (within a scaling factor) for any model that similarly defines metric

interaction radii.

3.1 Global Interactions result in more robust flocks

Models that include only local interactions produce flocks that can fragment or disperse if the

simulation parameters and initial conditions are not carefully chosen. If an agent has a limited,

metric-based interaction radius the simulation parameters (such as length of timestep, noise,

speed, range(s) etc.) must be selected to prevent moves that could leave an individual discon-

nected from the flock, i.e. with no other particles within its interaction radius. If this were to

happen there would be no mechanism to ensure that it rejoins the flock. Such fragmentation is

always a danger when the flock is perturbed, for example by predation, so as to result in a (group

of) individual(s) being separated from the flock. It also fails to capture how a flock might form

from an initially disperse state. This is characterized in Fig. S13, where flocks following the

hybrid projection model are shown to recover from an arbitrary perturbation involving a 16X

metric expansion of the flock while local, metric based flocks fail to aggregate. The recovery of

the hybrid projection model is independent of the parameters used, provided only that φp > 0.

In contrast, local metric based models are unable to reliably recover from perturbations that

move any (groups of) individual(s) outside the attraction radius.

This effect is also highlighted in supplementary movies S3, and S4, in which swarms of

individuals are introduced to a simple predator (The predator travels at a speed of 2 ∗ v0 and

is attracted to the centre of mass of the swarm. The individuals react to the predator when

it is within 10 ∗ dt ∗ v0 and their response is to travel directly away from it at 1.5 ∗ v0). In

Supp.Mov. S3, the predator is unable to separate a swarm of individuals following the hybrid

projection model (φp = 0.2, φa = 0.7), the global nature of the interactions between individuals

meaning it is always able to reform. In Supp.Mov. S4, individuals have a limited interaction
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radius. In this case they don’t respond to other members of the swarm that are separated by

more than 30 ∗ v0 ∗ dt. The difference in the ability of the swarm to remain as one cohesive

group is clear from the two movies.

3.2 Metric free interactions scale with the flock size

As reported by [9], the interactions within bird flocks are now understood to be scale free,

scaling with the overall extent of the flock. This would seem to be reflected in the failure

of metric based models to cope with increasing N unless the behavioral parameters are them-

selves continually adjusted, see e.g. Fig. S14. This is because the metric-based nature of these

models effectively fixes the density, through the inter-particle spacing, see Fig. S15b. As N

increases any fixed interaction range will eventually encompass only a small fraction of the

flock, leading to a breakdown in transfer of alignment information and loss of global alignment

α, see Fig. S14a The only way to adjust the model to obtain realistic behavior is to change

the interaction radii accordingly, so that they once again encompass a significant proportion of

the flock; essentially the model is demanding global interactions. This necessarily leads to a

rather complex (highly parameterized) model in which individuals make decisions based on the

position and orientation of an ever increasing number of neighbors; for a flock with N = 300

each individual responds to the positions and velocities of ∼ 270 of its neighbors, as shown in

Fig. S14c. Many of these are obscured from its view, as discussed in the next section.

3.3 Metric based interaction ranges lead to fixed density and opaque flocks

The hybrid projection model results in flocks that are marginally opaque, that is to say that

visual information can often pass, uninterrupted, across the entire flock. This seems to be

supported by observations. Any model that fixes density, i.e. through a fixed nearest neighbor

distance, must eventually give rise to fully opaque flocks as more individuals are added (see
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Figure 13: (SI) Maximum flock diameter for 50 different simulations (each trace) of a flock of
N = 50 individuals created using a) Local and b) Hybrid Projection Models following a 16X
linear expansion in two dimensions. We used typical parameters for a flock of N = 100 birds
outlined above and a hybrid projection model with φp = 0.2, φa = 0.7 and φn = 0.1. Technical
detail: the dimensionless time corresponding to each time step was dt = 0.1 in the metric
model and dt = 1 in the hybrid projection model and so we have scaled the simulation time
steps by this factor to obtain a fair comparison of the relative diameters, which would otherwise
be different (scaled) by a factor of 10.
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Figure 14: (SI) Breakdown of a local model. (a) As the number of individuals in the flock is
increased from N = 100 (black) to N = 300 (red) the global order parameter, α, falls to near
zero, unless the interaction ranges are extended to the larger values given in the text (green). (b)
The alignment interaction diameter (range) in bird length units (dashed line, see text for details)
is significantly higher than the maximum extent of the flock (Rmax) for realistic flocks (black,
green) and therefore encompasses almost the entire flock. (c) The increased interaction ranges
result in an individual monitoring the position and velocity of about 90% of its neighbors (they
giving input to the model for that individuals behavior) for N = 300 (green), as was the case
for N = 100 (black).
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mean field scaling analysis in main text). In the worst case scenario this could result in behavior

dominated by fictitious phantom interactions between individuals that are completely occluded

from one-another. Fig. S15a shows that local metric based flocks are almost entirely opaque.

This is due to the fact that the individuals essentially form a close packed liquid-like phase with

little change in the nearest neighbor separation; see Fig. S15b. This results in a large fraction

of unphysical phantom interactions, depending on whether one imagines that some (Fig. S15c)

or all (Fig. S15d) of a neighboring individual must be seen for a realistic interaction to occur.

Also, due to the metric nature of the interaction radii, as the flock gets bigger the information

transfer across the length of the flock becomes far less efficient as the interaction radii becomes

smaller relative to the extent of the flock. This means that a change in parameters is needed to

prevent the flock from entering a solid like state, in which global order is lost.

4 Phenotypical Behaviour under the Hybrid Projection Model

Fig. S16 shows a number of “phenotypes” supported by the hybrid projection model. In this fig-

ure the point in parameter space denoted I involves swarms with low global order α and weakly

correlated internal dynamics, somewhat reminiscent of a swarm of flying insects. The point F

can exhibit circulating vortex-like swarms, somewhat reminiscent of those observed in shoals

of fish [10]. This morphology doesn’t appear in swarms of isotropic individuals but is seen in

these anisotropic individuals that mimic the long-and-thin shape of fish. The point B has a rela-

tively high global order α and is similar to many of the swarms seen for isotropic individuals. It

is perhaps more reminiscent of travelling flocks of birds. In each case a corresponding snapshot

of a typical swarm configuration is shown. These results lead us to speculate that this model

may provide a method to classify swarming behaviour across species, e.g. according to the

values of φp, φa and σ (see Supp.Movs. S5-S7). As discussed below intermediate regions exist

in which the entire swarm can switch spontaneously between two distinct behavioural modes,
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Figure 15:(SI) Unphysical nature of a local model with the same parameters as used in Fig. S14.
(a) Flocks remain fully opaque in time from the point of view from an external observer. (b) This
is due to the metric nature of the model that fixes the average separation between individuals in
time. (c,d) The proportion of neighbors interacting with an individual through this model that
are (c) completely and (d) partly occluded from its view remains high throughout.
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Figure 16: (SI) Shown in the bottom left is the variation of the global order parameter α for
a swarm of 100 anisotropic individuals (10:1 long-and-thin) with the relative weights of the
projection φp and alignment φa terms (compare with Fig 2e for isotropic individuals). Shown in
the other panels are snapshots of the trajectories at each of the corresponding points indicated
on the phase plane. Points B, F and I correspond to Supp. Movs. S5, S6, and S7, respectively.

reminiscent of the ability of real animals to change their behaviour in response to a threat.

4.1 Vorticity of the flock, milling in fish

The vorticity ω of a swarm is here defined as the average tangential component of the velocities

with respect to the centre of mass of the swarm according to

ω =
1

N

N∑
i=1

δri
|δri|

× vi
|vi|

(10)
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Figure 17: (SI) (a) The variation of the time averaged magnitude of the vorticity, 〈|ω|〉, and
(b) the vorticity correlation time τω in simulation time-steps with the relative weights of the
projection φp and alignment φa terms. Following the main text all swarms contain N = 100
isotropic individuals and each point is an average of 3 simulations over 100,000 time-steps
following a 25,000 time-step pre-equilibration period.

with δri = ri − r̄ and r̄ = 1
N

∑N
i=1 ri the centre of mass of the flock. The vorticity satisfies

−1 < ω < 1 with ω > 0 for anticlockwise circulation and ω < 0 for clockwise motion. The

vorticity autocorrelation time τω is defined by

〈ω(t)ω(t+ τω)〉
〈ω2〉 =

1

2
(11)

Fig. S17 shows results obtained for swarms of anisotropic individuals; isotropic individuals tend

not to exhibit such high vorticity.

Fig. S17a clearly shows a region of increased vorticity in a region corresponding to one of

reduced order (centre of mass velocity) α in Fig. S16. As can be seen from Fig. S17b vorticity

decorrelation is observed on computationally accessible timescales. What is the mechanism

for this loss of correlation? The trajectory shown in Fig. S18 shows that this can arise due

to the ability of the swarm to switch between clockwise rotation, anticlockwise rotation and

translating phases. The time τω can roughly be associated with the time between switching
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Figure 18: (SI) The behaviour of a swarm of N = 100, 10:1 anisotropic individuals with φp =
0.4, φa = 0.525. Shown is (a) The time variation of the opacity Θ (green), order α (red) and
vorticity ω (black) against dimensionless time t, measured in units of the simulation timestep.
(b) The time variation of the density ρ, measured in dimensionless units of the inverse squared
length of each individual, over the same period. (c) The trajectory of the centre-of-mass of the
swarm over a much longer period; inset we zoom in on the apparent kinks in the trajectory,
revealing repeated switching between circulating and translating phases, somewhat reminiscent
of the run-and-tumble motion of bacteria [11]. The period shown in (a) and (b) corresponds to
the first section of the trace shown in (c). The axes show the dimensionless cartesian position,
divided by the length of each individual.

events. Significantly, switching occurs with very little change in opacity or average density,

although there is an increase in the amplitude of fluctuations about these average values when

the swarm enters the translating phase. This is further evidence of the robust nature of the

emergence of marginal opacity within our model.

4.2 Extreme regions of the parameter space

We already know that the model produces unphysical behaviour for extreme values of the pa-

rameters, e.g. it disperses if φp = 0. For strong alignment (φa) and very low noise (φn), i.e. near

the bottom of the diagonal boundary of the phase planes such as shown in Fig 2e or S16, the

swarm can adopt a single file arrangement that would also appear to be unphysical. This seems
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to be stable, or at least extremely long-lived and is associated with the fact that we have (pre-

cisely) fixed the velocity of all individuals. In the, rather unphysical, case that there is almost

no noise the swarm is unable to escape from this state because the projection term is parallel to

the velocity at all times, and so it has little effect.

For very low alignment (φa) and noise (φn), i.e. in the top left corner of Fig 2e or S16,

the swarm can adopt a stable, linear conformation in which the swarm condenses to a high

density state, with little global order (small α). Morphologies consisting of a single line, or

three-pronged rotationally symmetric structures seem to be stable in this case. Again, these are

rather unphysical. In this case the projection term causes most individuals to reverse direction at

each time-step. These morphologies are long-lived, leading to the long density auto correlation

times observed in this region in Fig 2f. This behaviour is largely attributed to our discrete time

approach combined with the lack of any momentum (or memory) between time steps.

5 Movie Captions

Ten movies are available to give examples of the type of data on real starling flocks used in this

study and the qualitative behaviour of swarms generated by the hybrid projection model.

Full resolution versions of these movies are available for download at:

https://files.warwick.ac.uk/djgpearce/browse/PNAS+SI+Movies

5.1 Supp.Movs. S1, S2

Supp.Movs. S1 & S2, are of the starling flocks shown in the red and black traces of Fig. 3b,

respectively. These were taken at Brighton, East Sussex, UK on 14/11/2011 between 15:30 and

16:30. These are typical of the type of footage captured of Starling flocks.
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5.2 Supp.Movs. S3, S4

Supp.Mov. S3 shows the robustness of the hybrid projection model under attack by a simple

predator trying to split up the swarm. Due to the global nature of the interactions between

individuals, the flock is always able to reform after the predator’s attacks.

Supp.Mov. S4 shows how a swarm responds to the same predator when the interactions

between individuals have a limited range. This means it becomes possible for the predator to

completely sever interaction between two regions of the swarm resulting in a far less cohesive

swarm that cannot guarantee that it will reform after becoming scattered.

Both Supp.Mov. S3 & S4 feature N = 100 individuals with φp = 0.2, φa = 0.7. The

predator travels at a speed of vp = 2 ∗ v0 and is attracted to the centre of mass of the swarm.

The individuals react to the predator when it is within rp = 10 ∗ dt ∗ v0 and their response is to

travel directly away from it at vresponse = 1.5 ∗ v0. In Supp.Mov. S4, individuals only react to

other members of the swarm within rlimit = 30 ∗ dt ∗ v0.

5.3 Supp.Movs. S5, S6, S7

Movies S5, S6 & S7, show the behaviour of a swarm of N = 100, 10:1 anisotropic (long

and thin) individuals within our hybrid projection model. These movies show the distinct

behavioural phenotypes observed with a change in the parameters φp and φa, highlighted in

Fig. S16. Each frame is a single time step.

Supp.Mov. S5, are obtained for φp = 0.1, φa = 0.75, point B in Fig. S16; this shows

a phenotype displaying a high level of orientational order similar to that seen in migratory

animals.

Supp.Mov. S6, are obtained for φp = 0.45, φa = 0.45, point F in Fig. S16; this shows a

phenotype displaying a high swarm vorticity much like the milling behaviour observed in fish.

Supp.Mov. S7, are obtained for φp = 0.175, φa = 0.45, point I in Fig. S16; this shows
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a phenotype with lower order in which there is a higher variation in the density of the swarm

reminiscent of the swarming behaviour observed in insects.

5.4 Supp.Movs. S8, S9, S10

Supp.Movs. S8, S9 & S10 show the qualitative effects of the introduction of a “blind angle”

behind each individual. This means that the projection term does not respond in any way to in-

dividuals within a π/8 cone directly behind them. Supp.Movs. S8, S9 & S10, show simulations

with exactly the same parameters as movies S5, S6 & S7, respectively, and highlight the modest

effect of the blind angle on the behaviour.
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