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Kirchhoff’s second law

H H

Theorems about cycles in finite graphs generalise to infinite
ones if you consider topological circles in |I|.

What about:

Kirchhoff's second law: in an electrical network, the net
potential drop along a cycle is 0.

?
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Infinite electrical networks

The circles of a locally finite electrical network N satisfy
Kirchhoff’s 2nd law if the sum of the resistances in N is finite.
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Infinite electrical networks

The circles of a locally finite electrical network N satisfy
Kirchhoff’s 2nd law if the sum of the resistances in N is finite.

Infinite electrical network:

AgraphT = (V,E)

afunctionr: E — R, (the )
a and a s, teV
a constant / € R (the of the current)

electrical current: the s-t flow i of strength /in ' that minimises
energy.

=2 ece P(e)r(e)
2 Y sz i(€)r(e) = 0 for every cycle C.
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Our tool:
(-TOP

@ letT = (V, E) be any graph

@ give each edge a length ¢(e)

@ this induces a metric: d(v, w) :=inf{{(P)| Pis a v-w path}
@ let ¢-TOP(T') be the completion of the corresponding metric
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(-TOP

Our tool:
(-TOP

@ letT = (V, E) be any graph

@ give each edge a length ¢(e)

@ this induces a metric: d(v, w) :=inf{{(P)| Pis a v-w path}

@ let ¢-TOP(T') be the completion of the corresponding metric
space

1 1 1 1
2 4 8 16
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(-TOP

Our tool:
(-TOP

@ letT = (V, E) be any graph

@ give each edge a length ¢(e)

@ this induces a metric: d(v, w) :=inf{{(P)| Pis a v-w path}

@ let ¢-TOP(T') be the completion of the corresponding metric
space

Theorem (G '06 (easy))
If 3 oceqry £(6) < oo then (-TOP(T') ~ |T.
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Kirchhoff’s 2nd law
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Let N be an electrical network on a graph I' with resistances
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Kirchhoff’s 2nd law

The circles of a locally finite electrical network N satisfy
Kirchhoff's 2nd law if the sum of the resistances in N is finite.

Theorem (G ’'06)
I£> ece(ry t(€) < oo then (-TOP(T') ~ |T|.

Theorem (G ’07)

Let N be an electrical network on a graph I' with resistances
¢: E — Ry. Then, the proper circles in (-TOP(I') satisfy
Kirchhoff’s 2nd law.

A circle is if its edges: — have finite total resistance, and
— form a dense subset.
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The hyperbolic compactification

Theorem (Gromov '87)

IfT is a hyperbolic graph then there is ¢ : E — R, such that
¢-TOP(I") is the hyperbolic compactification of T'.
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The hyperbolic compactification

Theorem (Gromov '87)

IfT is a hyperbolic graph then there is ¢ : E — R, such that
¢-TOP(I") is the hyperbolic compactification of T'.

(because the is a special case of ¢-TOP.
Problem

Are there other important spaces that are a special case of
¢-TOP?
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Generality of ¢-TOP

Theorem (Gromov ’87)

Every compact metric space is isometric to the hyperbolic
boundary of some hyperbolic graph
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Generality of /-TOP

Theorem (Gromov ’87)

Every compact metric space is isometric to the hyperbolic
boundary of some hyperbolic graph

Theorem (G ’08)

A metric space X is isometric to the ¢-TOP boundary of some
connected locally finite graph iff X is complete and separable.

( : has a countable dense subset)
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Generality of ¢-TOP

Theorem (G '08)

A metric space X is isometric to the ¢-TOP boundary of some
connected locally finite graph iff X is complete and separable.
X
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Generality of ¢-TOP

Theorem (G '08)

A metric space X is isometric to the ¢-TOP boundary of some
connected locally finite graph iff X is complete and separable.

X
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Generality of ¢-TOP

Theorem (G '08)

A metric space X is isometric to the ¢-TOP boundary of some
connected locally finite graph iff X is complete and separable.

X
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Random walks

Classical Problem: Given a graph I, is random walk on I
or ?
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Random walks

Classical Problem: Given a graph I, is random walk on I
or ?

New Problem: Can random walk on I go to infinity and come
back?

Why not. model random walk by brownian motion, and ...

Problem
Define brownian motion on ¢-TOP of a (Cayley) graph.
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The Cycle Space of an Infinite Graph

The topological cycle space C(I') of a locally finite graph T
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The Cycle Space of an Infinite Graph

The topological cycle space C(I') of a locally finite graph T':
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The Cycle Space of an Infinite Graph

The topological cycle space C(I') of a locally finite graph T':

@ A vector space over Z,
@ Consists of sums of edge sets of (finite or infinite) circles in ||

@ Allows infinite sums

Known facts: Generalisations:

@ Maclane: I is planar iff C(I') has a simple Bruhn & Stein
generating set

@ Tutte: If I' is 3-connected then its peripheral Bruhn
circuits generate C(I')

@ easy: The fundamental circuits of a spanning Diestel & Kuhn
tree generate C(I')
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The Cycle Space of an Infinite Graph

The topological cycle space C(I') of a locally finite graph T':

@ A vector space over Z,
@ Consists of sums of edge sets of (finite or infinite) circles in ||

@ Allows infinite sums
T
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The Cycle Space of an Infinite Graph

The topological cycle space C(I') of a locally finite graph T':

@ A vector space over Z,
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The Cycle Space of an Infinite Graph

The topological cycle space C(I') of a locally finite graph T':

@ A vector space over Z,
@ Consists of sums of edge sets of (finite or infinite) circles in ||

@ Allows infinite sums
X

Y
Idea: allow only sums of families of circuits of finite total
length
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A new Homology

Work in progress:
We aim at a homology that
@ generalises the topological cycle space

@ is defined for any metric space

@ allows generalisations of theorems from graphs to other
spaces
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