ℓ-TOP:
 graph topologies induced by edge-lengths

Agelos Georgakopoulos

Mathematisches Seminar
Universität Hamburg

Vienna, 27.8.2008

Kirchhoff's second law

Kirchhoff's second law

Theorems about cycles in finite graphs generalise to infinite ones if you consider topological circles in $|\Gamma|$.

Kirchhoff's second law

Theorems about cycles in finite graphs generalise to infinite ones if you consider topological circles in $|\Gamma|$.

What about:
Kirchhoff's second law: in an electrical network, the net potential drop along a cycle is 0 .
?

Infinite electrical networks

Theorem
The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\text { A graph } \Gamma=(V, E)
$$

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\begin{gathered}
\text { A graph } \Gamma=(V, E) \\
\text { a function } r: E \rightarrow \mathbb{R}_{+} \text {(the resistances) }
\end{gathered}
$$

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\begin{gathered}
\text { A graph } \Gamma=(V, E) \\
\text { a function } r: E \rightarrow \mathbb{R}_{+} \text {(the resistances) } \\
\text { a source and a sink } s, t \in V
\end{gathered}
$$

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\begin{gathered}
\text { A graph } \Gamma=(V, E) \\
\text { a function } r: E \rightarrow \mathbb{R}_{+} \text {(the resistances) } \\
\text { a source and a sink } s, t \in V \\
\text { a constant } I \in \mathbb{R} \text { (the intensity of the current) }
\end{gathered}
$$

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\begin{gathered}
\text { A graph } \Gamma=(V, E) \\
\text { a function } r: E \rightarrow \mathbb{R}_{+} \text {(the resistances) } \\
\text { a source and a sink } s, t \in V \\
\text { a constant } I \in \mathbb{R} \text { (the intensity of the current) }
\end{gathered}
$$

electrical current: the s - t flow i of strength I in Γ that minimises energy.

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\begin{gathered}
\text { A graph } \Gamma=(V, E) \\
\text { a function } r: E \rightarrow \mathbb{R}_{+} \text {(the resistances) } \\
\text { a source and a sink } s, t \in V \\
\text { a constant } I \in \mathbb{R} \text { (the intensity of the current) }
\end{gathered}
$$

electrical current: the s - t flow i of strength I in Γ that minimises energy.

$$
\text { energy:= } \sum_{e \in E} i^{2}(e) r(e)
$$

Infinite electrical networks

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.
Infinite electrical network:

$$
\begin{gathered}
\text { A graph } \Gamma=(V, E) \\
\text { a function } r: E \rightarrow \mathbb{R}_{+} \text {(the resistances) } \\
\text { a source and a sink } s, t \in V \\
\text { a constant } I \in \mathbb{R} \text { (the intensity of the current) }
\end{gathered}
$$

electrical current: the s - t flow i of strength I in Γ that minimises energy.

$$
\text { energy:= } \sum_{e \in E} i^{2}(e) r(e)
$$

Kirchhoff's 2nd law: $\sum_{\vec{e} \in \vec{C}} i(\vec{e}) r(e)=0$ for every cycle \vec{C}.

$\ell-T O P$

Our tool:

$$
\ell-T O P
$$

$\ell-T O P$

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph

$\ell-T O P$

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph
- give each edge a length $\ell(e)$

ℓ-TOP

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$

ℓ-TOP

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $\ell-T O P(\Gamma)$ be the completion of the corresponding metric space

ℓ-TOP

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $\ell-T O P(\Gamma)$ be the completion of the corresponding metric space

ℓ-TOP

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $\ell-T O P(\Gamma)$ be the completion of the corresponding metric space

ℓ-TOP

Our tool:

$$
\ell-T O P
$$

- let $\Gamma=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $\ell-T O P(\Gamma)$ be the completion of the corresponding metric space

Theorem (G '06 (easy))

$$
\text { If } \sum_{e \in E(\Gamma)} \ell(e)<\infty \text { then } \ell-T O P(\Gamma) \approx|\Gamma| .
$$

Kirchhoff's 2nd law

Theorem
The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.

Kirchhoff's 2nd law

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.

Theorem (G '06)

$$
\text { If } \sum_{e \in E(\Gamma)} \ell(e)<\infty \text { then } \ell-T O P(\Gamma) \approx|\Gamma| .
$$

Kirchhoff's 2nd law

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.

Theorem (G '06)

$$
\text { If } \sum_{e \in E(\Gamma)} \ell(e)<\infty \text { then } \ell-T O P(\Gamma) \approx|\Gamma| .
$$

Theorem (G '07)
Let N be an electrical network on a graph Γ with resistances $\ell: E \rightarrow R_{+}$. Then, the proper circles in $\ell-T O P(\Gamma)$ satisfy Kirchhoff's 2nd law.

Kirchhoff's 2nd law

Theorem

The circles of a locally finite electrical network N satisfy Kirchhoff's 2nd law if the sum of the resistances in N is finite.

Theorem (G '06)

$$
\text { If } \sum_{e \in E(\Gamma)} \ell(e)<\infty \text { then } \ell-T O P(\Gamma) \approx|\Gamma| .
$$

Theorem (G '07)
Let N be an electrical network on a graph Γ with resistances $\ell: E \rightarrow R_{+}$. Then, the proper circles in $\ell-T O P(\Gamma)$ satisfy Kirchhoff's 2nd law.

A circle is proper if its edges: - have finite total resistance, and - form a dense subset.

The hyperbolic compactification

Theorem (Gromov '87)
If Γ is a hyperbolic graph then there is $\ell: E \rightarrow R_{+}$such that ℓ-TOP (Γ) is the hyperbolic compactification of Γ.

The hyperbolic compactification

Theorem (Gromov '87)
If Γ is a hyperbolic graph then there is $\ell: E \rightarrow R_{+}$such that ℓ-TOP (Γ) is the hyperbolic compactification of Γ.
(because the Floyd boundary is a special case of ℓ-TOP.

The hyperbolic compactification

Theorem (Gromov '87)

If Γ is a hyperbolic graph then there is $\ell: E \rightarrow R_{+}$such that $\ell-T O P(\Gamma)$ is the hyperbolic compactification of Γ.
(because the Floyd boundary is a special case of $\ell-T O P$.

Problem

Are there other important spaces that are a special case of ℓ-TOP?

Generality of ℓ-TOP

Theorem (Gromov '87)
Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Generality of ℓ-TOP

Theorem (Gromov '87)

Every compact metric space is isometric to the hyperbolic boundary of some hyperbolic graph

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.
(separable: has a countable dense subset)

Generality of ℓ-TOP

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.

Generality of ℓ-TOP

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.

Generality of ℓ-TOP

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.

Generality of ℓ-TOP

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.

Generality of ℓ-TOP

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.

Generality of ℓ-TOP

Theorem (G '08)

A metric space X is isometric to the ℓ-TOP boundary of some connected locally finite graph iff X is complete and separable.

Random walks

Classical Problem: Given a graph Γ, is random walk on 「 transient or recurrent?

Random walks

Classical Problem: Given a graph Γ, is random walk on Γ transient or recurrent?

Random walks

Classical Problem: Given a graph Γ, is random walk on Γ transient or recurrent?

New Problem: Can random walk on 「 go to infinity and come back?

Random walks

Classical Problem: Given a graph Γ, is random walk on Γ transient or recurrent?

New Problem: Can random walk on 「 go to infinity and come back?

Why not: model random walk by brownian motion, and ...

Random walks

Classical Problem: Given a graph Γ, is random walk on Γ transient or recurrent?

New Problem: Can random walk on 「 go to infinity and come back?

Why not: model random walk by brownian motion, and ...

Problem

Define brownian motion on ℓ-TOP of a (Cayley) graph.

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

Known facts:

- MacLane: Γ is planar iff $\mathcal{C}(\Gamma)$ has a simple generating set

Generalisations:
Bruhn \& Stein

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

Known facts:

- MacLane: Γ is planar iff $\mathcal{C}(\Gamma)$ has a simple generating set
- Tutte: If Γ is 3 -connected then its peripheral circuits generate $\mathcal{C}(\Gamma)$

Generalisations:
Bruhn \& Stein

Bruhn
Bruhn
Brann

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

Known facts:

- MacLane: Γ is planar iff $\mathcal{C}(\Gamma)$ has a simple generating set
- Tutte: If Γ is 3 -connected then its peripheral circuits generate $\mathcal{C}(\Gamma)$
- easy: The fundamental circuits of a spanning tree generate $\mathcal{C}(\Gamma)$

Generalisations:
Bruhn \& Stein

Bruhn

Diestel \& Kühn

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

The Cycle Space of an Infinite Graph

The topological cycle space $\mathcal{C}(\Gamma)$ of a locally finite graph Γ :

- A vector space over \mathbb{Z}_{2}
- Consists of sums of edge sets of (finite or infinite) circles in $|\Gamma|$
- Allows infinite thin sums

Idea: allow only sums of families of circuits of finite total length

A new Homology

Work in progress:
We aim at a homology that

- generalises the topological cycle space
- is defined for any metric space
- allows generalisations of theorems from graphs to other spaces

A monster

