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Kirchhoff’s second law

Theorems about cycles in finite graphs generalise to infinite
ones if you consider topological circles in |Γ|.

What about:

Kirchhoff’s second law: in an electrical network, the net
potential drop along a cycle is 0.

?
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Infinite electrical networks

Theorem
The circles of a locally finite electrical network N satisfy
Kirchhoff’s 2nd law if the sum of the resistances in N is finite.

Infinite electrical network:

A graph Γ = (V , E)
a function r : E → R+ (the resistances)

a source and a sink s, t ∈ V
a constant I ∈ R (the intensity of the current)

electrical current: the s-t flow i of strength I in Γ that minimises
energy.

energy:=
∑

e∈E i2(e)r(e)

Kirchhoff’s 2nd law:
∑

~e∈~C i(~e)r(e) = 0 for every cycle ~C.
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`-TOP

Our tool:

`-TOP

let Γ = (V , E) be any graph
give each edge a length `(e)
this induces a metric: d(v , w) := inf{`(P) | P is a v -w path}
let `-TOP(Γ) be the completion of the corresponding metric
space

Theorem (G ’06 (easy))

If
∑

e∈E(Γ) `(e) < ∞ then `-TOP(Γ) ≈ |Γ|.
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Kirchhoff’s 2nd law

Theorem
The circles of a locally finite electrical network N satisfy
Kirchhoff’s 2nd law if the sum of the resistances in N is finite.

Theorem (G ’06)

If
∑

e∈E(Γ) `(e) < ∞ then `-TOP(Γ) ≈ |Γ|.

Theorem (G ’07)
Let N be an electrical network on a graph Γ with resistances
` : E → R+. Then, the proper circles in `-TOP(Γ) satisfy
Kirchhoff’s 2nd law.

A circle is proper if its edges: – have finite total resistance, and
– form a dense subset.
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The hyperbolic compactification

Theorem (Gromov ’87)
If Γ is a hyperbolic graph then there is ` : E → R+ such that
`-TOP(Γ) is the hyperbolic compactification of Γ.

(because the Floyd boundary is a special case of `-TOP.

Problem
Are there other important spaces that are a special case of
`-TOP?
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Generality of `-TOP

Theorem (Gromov ’87)
Every compact metric space is isometric to the hyperbolic
boundary of some hyperbolic graph

Theorem (G ’08)
A metric space X is isometric to the `-TOP boundary of some
connected locally finite graph iff X is complete and separable.

(separable: has a countable dense subset)
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Random walks

Classical Problem: Given a graph Γ, is random walk on Γ
transient or recurrent ?

New Problem: Can random walk on Γ go to infinity and come
back?

Why not: model random walk by brownian motion, and ...

Problem
Define brownian motion on `-TOP of a (Cayley) graph.
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The Cycle Space of an Infinite Graph

The topological cycle space C(Γ) of a locally finite graph Γ:

A vector space over Z2

Consists of sums of edge sets of (finite or infinite) circles in |Γ|

Allows infinite thin sums

Known facts:

MacLane: Γ is planar iff C(Γ) has a simple
generating set

Tutte: If Γ is 3-connected then its peripheral
circuits generate C(Γ)

easy: The fundamental circuits of a spanning
tree generate C(Γ)

Generalisations:

Bruhn & Stein

Bruhn

Diestel & Kühn
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The Cycle Space of an Infinite Graph

The topological cycle space C(Γ) of a locally finite graph Γ:

A vector space over Z2

Consists of sums of edge sets of (finite or infinite) circles in |Γ|

Allows infinite thin sums
x

y

Idea: allow only sums of families of circuits of finite total
length
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A new Homology

Work in progress:

We aim at a homology that

generalises the topological cycle space
is defined for any metric space
allows generalisations of theorems from graphs to other
spaces
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A monster
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