Some results on the interplay between random walks and electrical networks

Agelos Georgakopoulos

University of Warwick

11/10/12

Electrical Network Reduction

Theorem (G \& V. Kaimanovich '11)

Let N be an electrical network and B its set of external nodes. Then there is an equivalent network with vertex set B in which each edge (a, b) has conductance

$$
C_{e f f}(a, b)=d(a) \mathbb{P}_{a}(b)
$$

The Discrete Dirichlèt Problem

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u}: B \rightarrow \mathbb{R}$.

The Discrete Dirichlèt Problem

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u}: B \rightarrow \mathbb{R}$.

Find: an extension $u: V \rightarrow \mathbb{R}$ harmonic on internal nodes $(V \backslash B)$.

The Discrete Dirichlèt Problem

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u}: B \rightarrow \mathbb{R}$.

Find: an extension $u: V \rightarrow \mathbb{R}$ harmonic on internal nodes $(V \backslash B)$.

Solution [Doyle \& Snell]: Let

$$
u(x)=\mathbb{E}[\hat{u}(b) \mid \text { random walk from } x \text { exits at b] }
$$

The Discrete Dirichlèt Problem

Given: a graph G, a set of external nodes $B \subset V$, and a boundary function (voltage) $\hat{u}: B \rightarrow \mathbb{R}$.

Find: an extension $u: V \rightarrow \mathbb{R}$ harmonic on internal nodes $(V \backslash B)$.

Solution [Doyle \& Snell]: Let

$$
u(x)=\mathbb{E}[\hat{u}(b) \mid \text { random walk from } x \text { exits at b] }
$$

Solution 2: Start $d(b) \hat{u}(b)$ particles at each $b \in B$, kill them upon returning to B, and let

$$
u(x)=\frac{\mathbb{E}[\# \text { visits to } x]}{d(x)}
$$

Groups and Random Walk

Theorem (Kesten '59)
Let Γ be a group generated by a finite set S and let N be a normal subgroup of Γ. Then the following are equivalent:

- $\rho(\operatorname{Cay}(\Gamma / N, S))=\rho(\operatorname{Cay}(\Gamma, S)) ;$
- N is amenable.
$\rho(\Gamma):=\lim _{n}\left(p_{x, x, 2 n}\right)^{1 / 2 n}$ is the spectral radius of RW on Γ.

Transience vs. Recurrence

Transience is a group invariant:

Theorem (Markvorsen, Guinness \& Thomassen '92)
All locally finite Cayley graphs of a finitely generated group are of the same type.

Transience vs. Recurrence

Transience is a group invariant:

Theorem (Markvorsen, Guinness \& Thomassen '92)

All locally finite Cayley graphs of a finitely generated group are of the same type.

Theorem (T. Lyons '83)

Random Walk on a graph G is transient
\ll
there is a flow of finite energy from some vertex o to infinity.

Energy $E(i):=\sum_{x y \in E(G)} i(x y)^{2}$

The Effective Conductance Measure

For any infinite graph G, we construct a measure space $\mathcal{C}=\mathcal{C}(G)$ that allows expressing the energy of harmonic functions as an integral on the boundary:

The Effective Conductance Measure

For any infinite graph G, we construct a measure space $C=C(G)$ that allows expressing the energy of harmonic functions as an integral on the boundary:

Theorem (G \& V. Kaimanovich '12+)

For every transient locally finite network N there is a measure C on \mathcal{P}^{2} such that for every harmonic function u with boundary function \widehat{u},

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} d C(\eta, \zeta)
$$

The Effective Conductance Measure

For any infinite graph G, we construct a measure space $C=C(G)$ that allows expressing the energy of harmonic functions as an integral on the boundary:

Theorem (G \& V. Kaimanovich '12+)

For every transient locally finite network N there is a measure C on \mathcal{P}^{2} such that for every harmonic function u with boundary function \widehat{u},

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} d C(\eta, \zeta) .
$$

Energy $E(u):=\sum_{x \sim y}(u(x)-u(y))^{2}$

The Effective Conductance Measure

For any infinite graph G, we construct a measure space $C=C(G)$ that allows expressing the energy of harmonic functions as an integral on the boundary:

Theorem (G \& V. Kaimanovich '12+)

For every transient locally finite network N there is a measure C on \mathcal{P}^{2} such that for every harmonic function u with boundary function \widehat{u},

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} d C(\eta, \zeta)
$$

\mathcal{C} is equivalent to the square of the Poisson boundary \mathcal{P}; thus

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

Groups and Harmonic Functions

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

Groups and Harmonic Functions

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

non-trivial $H D(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and \mathcal{P}

Groups and Harmonic Functions

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

non-trivial $H D(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Groups and Harmonic Functions

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

non-trivial $H D(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Problem

Is triviality of \mathcal{P} a group-theoretic invariant?

Groups and Harmonic Functions

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

non-trivial $H D(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Problem

Is triviality of \mathcal{P} a group-theoretic invariant?

Three 'modes' of triviality of $H D$:

- \mathcal{P} is trivial (i.e. contains ≤ 1 point)
- $\Theta(\eta, \zeta)=\infty$ for every η, ζ
- Θ finite, but integral ∞

Groups and Harmonic Functions

$$
E(u)=\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} \Theta(\eta, \zeta) d v^{2}(\eta, \zeta)
$$

non-trivial $H D(G) \Longrightarrow$ non-trivial $H^{\infty}(G)$ and $\mathcal{P} \Longrightarrow$ transient G

Problem

Is triviality of \mathcal{P} a group-theoretic invariant?

Three 'modes' of triviality of $H D$:

- \mathcal{P} is trivial (i.e. contains ≤ 1 point)
- $\Theta(\eta, \zeta)=\infty$ for every η, ζ
- Θ finite, but integral ∞

Problem

Can a group display > 1 of these modes?

Our setup: ℓ-TOP

$$
\ell-T O P
$$

- let $G=(V, E)$ be any graph

Our setup: ℓ-TOP

$$
\ell-T O P
$$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$

Our setup: ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$

Our setup: ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Our setup: ℓ-TOP

ℓ-TOP

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Agelos Georgakopoulos

Our setup: ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Agelos Georgakopoulos

Our setup: ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Agelos Georgakopoulos

Our setup: ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06 (easy))

$$
\text { If } \sum_{e \in E(G)} \ell(e)<\infty \text { then }|G|_{\ell} \approx|G| .
$$

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)

Applications of $\mid \mathrm{G}_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of $|\mathrm{G}|_{\ell}$ (Hyperbolic Groups... '87)

Applications of $\mid \mathrm{G}_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of $|\mathrm{G}|_{\ell}$ (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)

Applications of $\mid \mathrm{G}_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|e (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel, Electr. J. Comb)

Applications of $\mid \mathrm{G}_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|e (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)

Applications of $\mid \mathrm{G}_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|e (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|e (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)
- Colin de Verdiere et. al. use it to study self-adjointness of the Laplace and Schrödinger operators (Mathematical Physics, Analysis and Geometry, '10)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|e (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)
- Colin de Verdiere et. al. use it to study self-adjointness of the Laplace and Schrödinger operators (Mathematical Physics, Analysis and Geometry, '10)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- Gromov showed that his hyperbolic compactification is a special case of |G|e (Hyperbolic Groups... '87)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel, Electr. J. Comb)
- application in Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications, '08)
- Colin de Verdiere et. al. use it to study self-adjointness of the Laplace and Schrödinger operators (Mathematical Physics, Analysis and Geometry, '10)

All above authors "discovered" |G|e independently!

Our plan

We will construct brownian motion on $|\mathrm{G}|_{\ell}$ as a limit of brownian motions on finite subgraphs.

Our plan

We will construct brownian motion on $|\mathrm{G}|_{\ell}$ as a limit of brownian motions on finite subgraphs.

Theorem (G '06 (easy)) If $\sum_{e \in E(G)} \ell(e)<\infty$ then $|G|_{\ell} \approx|G|$.

Our three topologies

Level 1 :
The graph $|\mathrm{G}|_{\ell}$ (with boundary)

Our three topologies

Level 1: \quad The graph $|\mathrm{G}|_{\ell}$ (with boundary)

The space of sample paths
$C=C\left([0, T] \rightarrow|G|_{\ell}\right)$

Our three topologies

Level 1:
The graph $|\mathrm{G}|_{\ell}$ (with boundary)

The space of sample paths $C=C\left([0, T] \rightarrow|G|_{\ell}\right)$
with the supremum metric
$d_{\nu}(b, c):=\sup _{x \in|G|} d_{\ell}(b(x), c(x))$

Our three topologies

Level 1:
The graph $|\mathrm{G}|_{\ell}$ (with boundary)

The space of sample paths
$C=C\left([0, T] \rightarrow|\mathrm{G}|_{\ell}\right)$
with the supremum metric
$d_{0}(b, c):=\sup _{x \in|G|} d_{\ell}(b(x), c(x))$

The space $\mathcal{M}=\mathcal{M}(C)$ of measures on C
Level 3:

Our three topologies

Level 1:
The graph $|\mathrm{G}|_{\ell}$ (with boundary)

The space of sample paths
$C=C\left([0, T] \rightarrow|\mathrm{G}|_{\ell}\right)$
with the supremum metric

$$
d_{\curlywedge}(b, c):=\sup _{x \in|G|} d_{\ell}(b(x), c(x))
$$

The space $\mathcal{M}=\mathcal{M}(C)$ of measures on C
Level 3: with the weak topology,

Our three topologies

Level 1:
The graph $|\mathrm{G}|_{\ell}$ (with boundary)

The space of sample paths
$C=C\left([0, T] \rightarrow|G|_{\ell}\right)$
with the supremum metric

$$
d_{\curlywedge}(b, c):=\sup _{x \in|G|} d_{\ell}(b(x), c(x))
$$

The space $\mathcal{M}=\mathcal{M}(C)$ of measures on C
Level 3: with the weak topology, i.e. basic open sets of an element μ are of the form
$\left\{v \in \mathcal{M}:\left|\int f_{i} d v-\int f_{i} d \mu\right|<\epsilon_{i}, i=1, \ldots, k\right\}$

Our three topologies

Level 1 :
The graph $|\mathrm{G}|_{\ell}$ (with boundary)

The space of sample paths
$C=C\left([0, T] \rightarrow|G|_{\ell}\right)$
with the supremum metric

$$
d_{\curlywedge}(b, c):=\sup _{x \in|G|} d_{\ell}(b(x), c(x))
$$

The space $\mathcal{M}=\mathcal{M}(C)$ of measures on C
Level 3: with the weak topology, i.e. basic open sets of an element μ are of the form

$$
\left\{v \in \mathcal{M}:\left|\int f_{i} d v-\int f_{i} d \mu\right|<\epsilon_{i}, i=1, \ldots, k\right\}
$$

where the f_{i} are bounded continuous real_functions on C

Convergence in \mathcal{M}

Let G_{n} be a sequence exhausting G.

Convergence in \mathcal{M}

Let G_{n} be a sequence exhausting G.
Let C, μ_{n} be the brownian motion on G_{n}.

Convergence in \mathcal{M}

Let G_{n} be a sequence exhausting G.
Let C, μ_{n} be the brownian motion on G_{n}.

Theorem (classic)

Let $\Gamma \subseteq \mathcal{M}$. Then $\bar{\Gamma}$ is compact iff for every ϵ there is a function $\omega_{\epsilon}(\delta)$, with $\omega \rightarrow 0$ as $\delta \rightarrow 0$, such that $\mu\left(\left\{x: w_{x}(\delta) \leq \omega_{\epsilon}(\delta)\right.\right.$ for all $\left.\left.\delta\right\}\right)>1-\epsilon / 2$ for all $\mu \in \Gamma$, where $w_{x}(\delta):=\sup _{|t-s|<\delta \delta}|x(t)-x(s)|$ is the modulus of continuity of x.

Convergence in \mathcal{M}

Let G_{n} be a sequence exhausting G.
Let C, μ_{n} be the brownian motion on G_{n}.

Theorem (classic)

Let $\Gamma \subseteq \mathcal{M}$. Then $\bar{\Gamma}$ is compact iff for every ϵ there is a function $\omega_{\epsilon}(\delta)$, with $\omega \rightarrow 0$ as $\delta \rightarrow 0$, such that $\mu\left(\left\{x: w_{x}(\delta) \leq \omega_{\epsilon}(\delta)\right.\right.$ for all $\left.\left.\delta\right\}\right)>1-\epsilon / 2$ for all $\mu \in \Gamma$, where $w_{x}(\delta):=\sup _{|t-s|<\delta}|x(t)-x(s)|$ is the modulus of continuity of x.
$=>\left\{\mu_{n}\right\}_{n}$ has an accumulation point
Remark: It is known that $\mathcal{M}(X)$ is compact iff X is compact; this would have allowed us to circumvent the above theorem if C were compact, but it isn't (although $|\mathrm{G}|_{\ell}$ is).

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)
For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}
- It is the limit of SRW's of finite subgraphs;

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}
- It is the limit of SRW's of finite subgraphs;
- It is unique;

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;
- It is recurrent;

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;
- It is recurrent;
- Even more, its expected cover time is $\leq C L^{2}$, in particular almost surely finite!

Cover Time

The Cover Time of a graph is being studied in several disciplines:

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid
- cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen \& Zeitouni]

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid
- cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen \& Zeitouni]
- Approximating algorithm [Ding, Lee \& Peres, Ann. Math. '12]

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]
- physicists study the fractal structure of the uncovered set of a finite grid
- cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen \& Zeitouni]
- Approximating algorithm [Ding, Lee \& Peres, Ann. Math. '12]

Theorem (G \& P. Winkler '11)

The cover time for Brownian motion on a finite graph of total length L is at most $2 L^{2}$.

brownian motion on $|G|_{\ell}$

Theorem (G \& K. Kolesko '12+)

For every G, ℓ such that $\sum_{e \in E} \ell(e)<\infty$, there is a brownian motion B_{ℓ} on $|G|_{\ell}$ with the following properties

- it behaves locally like standard BM on \mathbb{R}
- It is the limit of SRW's of finite subgraphs;
- It is unique;
- Transition probabilities can be calculated using electrical networks;
- It is recurrent;
- Even more, its expected cover time is $\leq C L^{2}$, in particular almost surely finite!

Uniqueness of currents

Theorem (G '08)

In a network with $\sum_{e \in E} r(e)<\infty$ there is a unique non-elusive electric current with finite energy.

Uniqueness of currents

Theorem (G '08)

In a network with $\sum_{e \in E} r(e)<\infty$ there is a unique non-elusive electric current with finite energy.

Meta-conjecture: (statistical) physics extends to infinite networks of finite total length

