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Overview

@ Wild spaces have a huge fundamental group 4
and 1st homology group
(1st Homology group H; = abelianization of 74)

@ We are going to tame H; by removing some ‘redundancy’

@ ... using experience from infinite graph theory

Agelos Georgakopoulos



Example: MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

C(G): the cycle space of G = H;(G) (simlicial or singular homology)=
Abel(r1)
simple: no edge appears in more than two generators.
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Example: MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

C(G): the cycle space of G = H;(G) (simlicial or singular homology)=
Abel(r1)
simple: no edge appears in more than two generators.

But using the right homology
(topological cycle space of Diestel & Kiihn) ...:

Theorem (Bruhn & Stein ’05)

... verbatim generalisation for locally finite
G.
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Idea: put a natural distance function on H;(X) ...
... and identify elements at distance O.

d(a, b) := inf (area you need to make a ~ b)
more precisely: d(a, b) := inf o, area(X"\ X)
azl(;in X'

Let H,(X):= H1(X)/d—o
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A new homology for metric spaces

Idea: put a natural distance function on H;(X) ...
... and identify elements at distance O.

d(a, b) := inf (area you need to make a ~ b)
more precisely: d(a, b) := inf o, area(X"\ X)
azl(;in X'

Let Hj (Xl: Hi(X)/a=0
and, if you like, let H;(X) be its completeion.

Agelos Georgakopoulos
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Cycle decompositions

@ Can you make a theorem out of this observation?
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Cycle decompositions - finite graphs

Proposition

Every element of C(G) can be written as a
union of a set of edge-disjoint cycles.
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Cycle decompositions - infinite graphs

Theorem (Diestel & Kiihn)

Every element of the topological cycle space C(G) of a locally
finite graph G can be written as a union of a set of edge-disjoint
circles.
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Cycle decompositions - infinite graphs

Theorem (Diestel & Kiihn)

Every element of the topological cycle space C(G) of a locally
finite graph G can be written as a union of a set of edge-disjoint
circles.

One of many classical theorems recently extended to infinite
graphs using our new homology, the topological cycle space
C(G) in an ongoing series of >30 papers by Diestel, Kihn,
Bruhn, Stein, G, Spriissel, Richter, Vella, et. al.
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What about more continuous spaces?

Proposition
D Every element of C(G) can
be written as a union of a
@ set of edge-disjoint cycles.

?

Agelos Georgakopoulos



The Theorem

Proposition
- Every element of C(G) can

be written as a union of a
@ set of edge-disjoint cycles.

?

Agelos Georgakopoulos
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Proposition
- Every element of C(G) can

be written as a union of a
@ set of edge-disjoint cycles.

?

Theorem (G’ 09)

For every compact metric space X and C € ﬁ1(X ), there is a
o-representative (z;);cy of C that minimizes the length )", ¢(z;)
among all representatives of C.
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Theorem (G’ 09)

For every compact metric space X and C € /H\1(X ), there is a
o-representative (z;);cn of C that minimizes the length >, 4(z;)
among all representatives of C.

@ Specify a subset of well-behaved elements of I/-I\1(X),
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@ Prove the statement for primitive elements;

@ Show that every other element can be expressed as a sum
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Proof sketch

Theorem (G’ 09)

For every compact metric space X and C € /H\1(X ), there is a
o-representative (z;);cn of C that minimizes the length >, 4(z;)
among all representatives of C.

@ Specify a subset of well-behaved elements of I/-I\1(X),
called primitive elements;

@ Prove the statement for primitive elements;

@ Show that every other element can be expressed as a sum
of primitive elements.

We say that C € ﬁ1(X) splits if there are A,B # 0 € I—AI1(X) with

C=A+B,and
¢(C) = L(A) + £(B).

Then C is primitive if it doesn’t split.

Agelos Georgakopoulos



An intermediate result

Let (I', +) be an abelian metrizable topological group, and
suppose a function £ : I — R is given satisfying the following
properties

@ /(a) =0iffa=0;

@ /(a+b) </l a)+((b)foreverya,beT;

@ if b=1im g, then ¢(b) < liminf{(a;);

@ Some “isoperimetric inequality” holds: e.g.

d(a,0) < Ur?(a) for some fixed U and for every ac T.

Then every element of I is a (possibly infinite) sum of primitive
elements.
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Theorem (MacLane ’37)
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The Conjecture

Theorem (MacLane ’37)

A finite graph G is planar iff
C(G) has a simple
generating set.

?

Let X be a compact, 1—dimensional, locally connected, metrizable
space that has no cut point. Then X is planar iff there is a simple
set S of loops in X and a metric d inducing the topology of X so
that the set U := {[x] € H1( ) | x € S} ‘spans H1(X)

Agelos Georgakopoulos
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¢(-TOP

@ let G=(V, E) be any graph
@ give each edge a length /(e)
@ this induces a metric: d(v,w) :=inf{¢(P)| Pis a v-w path}
@ let |G|, be the completion of the corresponding metric space

Theorem (G ’06, '09)

If Y ece(q) (€) < oo then |G, ~ |G], and H; coincides
with the topological cycle space and with Hj (X).

Agelos Georgakopoulos



¢(-TOP

@ let G=(V, E) be any graph
@ give each edge a length /(e)
@ this induces a metric: d(v,w) :=inf{¢(P)| Pis a v-w path}
@ let |G|, be the completion of the corresponding metric space

Problem

Does every compact metrizable space X admit a metric
such that Hy (X) = Hy(X)?
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¢(-TOP

@ let G=(V, E) be any graph
@ give each edge a length /(e)
@ this induces a metric: d(v, w) :=inf{{(P) | Pis a v-w path}
@ let |G|, be the completion of the corresponding metric space

Theorem (Gromov ’87)

For every compact metric space X there is a locally finite
graph G and ¢ : E — R, such that the boundary of |G|, is
isometric to X.
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Applications of |G|,

Applications of |G|, (¢-TOP)

@ used by Floyd to study Kleinian groups (Invent. math. '80)

@ used by Benjamini and Schramm for Random Walks/harmonic
functions/sphere Packings (Invent. math. 96, Preprint '09)

@ application in the study of the Cycle Space of an infinite graph
(G & Sprissel Electr. J. Comb)

@ applied to Electrical Networks (G, JLMS ’10)

@ Carlson studied the Dirichlet Problem at the boundary (Analysis
on graphs and its applications)

@ used by Colin de Verdiere et. al. to study Laplace and
Schrédinger operators

All above authors “discovered” |G|, independently!
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Further Problems

@ Generalise to higher dimensions

@ Generalise other graph-theoretical theorems to
continua/fractals

@ Can you modify H: to obtain a homology that is invariant
under homotopy—equivalence?

@ Try to ‘tame’ w1 by similar methods

@ Compute I/-I\1 for your favourite space
Sources:
AG: “Cycle decompositions: from graphs to continua”,
arxiv.org/abs/1003.5115

AG: “Graph topologies induced by edge lengths”
http://arxiv.org/abs/0903.1744

These slides are available online

Agelos Georgakopoulos



Theorem (G’ 09)

For every compact metric space X and C € /H\1(X ), there is a
representative (z;);en of C that minimizes the length >, ¢(z;) among

all representatives of C.

d(a, b) :=inf o, area( X"\ X). Let H{(X):= H1(X)/d=0
axbin X’

Let X be a compact, 1—dimensional, locally connected, metrizable space
that has no cut point. Then X is planar iff there is a simple set S of loops
in X and a metric d inducing the topology of X so that the set

U:={[x] € Hi(X) | x € S} ‘spans’ H;(X).
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