Taming the homology of Wild spaces

Agelos Georgakopoulos

TU Graz / U of Ottawa / U of Geneva
(...in other words, looking for a job...)

Strobl, 7.7.11

Overview

- Wild spaces have a huge fundamental group π_{1} and 1st homology group

Overview

- Wild spaces have a huge fundamental group π_{1} and 1st homology group (1st Homology group $H_{1}=$ abelianization of π_{1})

Overview

- Wild spaces have a huge fundamental group π_{1} and 1st homology group (1st Homology group $H_{1}=$ abelianization of π_{1})
- We are going to tame H_{1} by removing some 'redundancy'

Overview

- Wild spaces have a huge fundamental group π_{1} and 1st homology group (1st Homology group $H_{1}=$ abelianization of π_{1})
- We are going to tame H_{1} by removing some 'redundancy'
- ... using experience from infinite graph theory

Example: MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

$\mathcal{C}(G)$: the cycle space of $G=H_{1}(G)$ (simlicial or singular homology)= Abel $\left(\pi_{1}\right)$
simple: no edge appears in more than two generators.

Example: MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

$\mathcal{C}(G)$: the cycle space of $G=H_{1}(G)$ (simlicial or singular homology)= Abel $\left(\pi_{1}\right)$
simple: no edge appears in more than two generators.

$?$

Example: MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

$\mathcal{C}(G)$: the cycle space of $G=H_{1}(G)$ (simlicial or singular homology)= Abel $\left(\pi_{1}\right)$
simple: no edge appears in more than two generators.

Agelos Georgakopoulos

Example: MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

$\mathcal{C}(G)$: the cycle space of $G=H_{1}(G)$ (simlicial or singular homology)= Abel $\left(\pi_{1}\right)$
simple: no edge appears in more than two generators.

But using the right homology (topological cycle space of Diestel \& Kühn) ...:

Theorem (Bruhn \& Stein '05)

... verbatim generalisation for locally finite
G.

Example: MacLane's Planarity Criterion

Theorem (MacLane '37)

A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.
$\mathcal{C}(G)$: the cycle space of $G=H_{1}(G)$ (simlicial or singular homology)= Abel $\left(\pi_{1}\right)$
simple: no edge appears in more than two generators.

$?$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

$d(a, b):=$ inf (area you need to make $a \approx b$)
more precisely: $d(a, b):=\inf _{\substack{x^{\text {isom }} x^{\prime} \\ a \approx b \text { in }^{\prime} X^{\prime}}}$ area $\left(X^{\prime} \backslash X\right)$

$$
\text { Let } H_{1}^{\prime}(X):=H_{1}(X) / d=0
$$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

$d(a, b):=\inf$ (area you need to make $a \approx b$)
more precisely: $d(a, b):=\inf _{\substack{x^{\text {isom }} x^{\prime} \\ a \approx b \text { in }^{\prime} X^{\prime}}}$ area $\left(X^{\prime} \backslash X\right)$

$$
\text { Let } H_{1}^{\prime}(X):=H_{1}(X) / d=0
$$

and, if you like, let $\widehat{H_{1}}(X)$ be its completeion.

Examples

Cycle decompositions

Cycle decompositions

Cycle decompositions

Cycle decompositions

->

Cycle decompositions

->

Cycle decompositions

->

->

- Can you make a theorem out of this observation?

Cycle decompositions - finite graphs

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

->

Cycle decompositions - infinite graphs

Theorem (Diestel \& Kühn)

Every element of the topological cycle space $\mathcal{C}(G)$ of a locally finite graph G can be written as a union of a set of edge-disjoint circles.

Cycle decompositions - infinite graphs

Theorem (Diestel \& Kühn)

Every element of the topological cycle space $\mathcal{C}(G)$ of a locally finite graph G can be written as a union of a set of edge-disjoint circles.

One of many classical theorems recently extended to infinite graphs using our new homology, the topological cycle space $\mathcal{C}(G)$ in an ongoing series of >30 papers by Diestel, Kühn, Bruhn, Stein, G, Sprüssel, Richter, Vella, et. al.

What about more continuous spaces?

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.
?

The Theorem

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

?

The Theorem

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

$?$

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_{1}}(X)$, called primitive elements;

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_{1}}(X)$, called primitive elements;
- Prove the statement for primitive elements;

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_{1}}(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_{1}}(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_{1}}(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.
We say that $C \in \widehat{H_{1}}(X)$ splits if there are $A, B \neq 0 \in \widehat{H_{1}}(X)$ with

$$
\begin{gathered}
C=A+B, \text { and } \\
\ell(C)=\ell(A)+\ell(B)
\end{gathered}
$$

Proof sketch

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a σ-representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\widehat{H_{1}}(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.
We say that $C \in \widehat{H_{1}}(X)$ splits if there are $A, B \neq 0 \in \widehat{H_{1}}(X)$ with

$$
\begin{gathered}
C=A+B, \text { and } \\
\ell(C)=\ell(A)+\ell(B)
\end{gathered}
$$

Then C is primitive if it doesn't split.

An intermediate result

Let $(\Gamma,+)$ be an abelian metrizable topological group, and suppose a function $\ell: \Gamma \rightarrow \mathbb{R}^{+}$is given satisfying the following properties

- $\ell(a)=0$ iff $a=0$;
- $\ell(a+b) \leq \ell(a)+\ell(b)$ for every $a, b \in \Gamma$;
- if $b=\lim a_{i}$ then $\ell(b) \leq \liminf \ell\left(a_{i}\right)$;
- Some "isoperimetric inequality" holds: e.g. $d(a, 0) \leq U \ell^{2}(a)$ for some fixed U and for every $a \in \Gamma$.
Then every element of Γ is a (possibly infinite) sum of primitive elements.

The Conjecture

Theorem (MacLane '37)

A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

The Conjecture

Theorem (MacLane '37)

A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

Conjecture

Let X be a compact, 1-dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U:=\left\{[\chi] \in \widehat{H_{1}}(X) \mid \chi \in S\right\}$ 'spans' $\widehat{H_{1}}(X)$.

$\ell-T O P$

ℓ-TOP

$\ell-T O P$

$$
\ell-T O P
$$

- let $G=(V, E)$ be any graph

ℓ-TOP

$$
\ell-T O P
$$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$

$\ell-T O P$

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$

ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06)

$$
\text { If } \sum_{e \in E(G)} \ell(e)<\infty \text { then }|G|_{\ell} \approx|G| . \ldots
$$

ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a $v-w$ path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G '06, '09)

If $\sum_{e \in E(G)} \ell(e)<\infty$ then $|G|_{\ell} \approx|G|$, and $\widehat{H_{1}}$ coincides with the topological cycle space and with $\check{H}_{1}(X)$.

ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Problem

Does every compact metrizable space X admit a metric such that $\widehat{H_{1}}(X)=\check{H}_{1}(X)$?

ℓ-TOP

$\ell-T O P$

- let $G=(V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w):=\inf \{\ell(P) \mid P$ is a v-w path $\}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (Gromov '87)

For every compact metric space X there is a locally finite graph G and $\ell: E \rightarrow R_{+}$such that the boundary of $|G|_{\ell}$ is isometric to X.

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel Electr. J. Comb)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

Applications of $|\mathrm{G}|_{\ell}$

Applications of $|\mathrm{G}|_{\ell} \quad(\ell-T O P)$

- used by Floyd to study Kleinian groups (Invent. math. '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. '96, Preprint '09)
- application in the study of the Cycle Space of an infinite graph (G \& Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS '10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

All above authors "discovered" $|\mathrm{G}| \ell$ independently!

Further Problems

- Generalise to higher dimensions

Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals

Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify $\widehat{H_{1}}$ to obtain a homology that is invariant under homotopy-equivalence?

Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify $\widehat{H_{1}}$ to obtain a homology that is invariant under homotopy-equivalence?
- Try to 'tame' π_{1} by similar methods

Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify $\widehat{H_{1}}$ to obtain a homology that is invariant under homotopy-equivalence?
- Try to 'tame' π_{1} by similar methods
- Compute $\widehat{H_{1}}$ for your favourite space

Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify $\widehat{H_{1}}$ to obtain a homology that is invariant under homotopy-equivalence?
- Try to 'tame' π_{1} by similar methods
- Compute $\widehat{H_{1}}$ for your favourite space

Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify $\widehat{H_{1}}$ to obtain a homology that is invariant under homotopy-equivalence?
- Try to 'tame' π_{1} by similar methods
- Compute $\widehat{H_{1}}$ for your favourite space

Sources:

AG: "Cycle decompositions: from graphs to continua", arxiv.org/abs/1003.5115
AG: "Graph topologies induced by edge lengths"
http://arxiv.org/abs/0903.1744

These slides are available online

Summary

Theorem (G' 09)

For every compact metric space X and $C \in \widehat{H_{1}}(X)$, there is a representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

$$
d(a, b):=\inf _{\substack{x^{\text {isom}} \\ a \approx \operatorname{Din}^{\prime} X^{\prime}}}^{\substack{ \\a r e a \\\left(X^{\prime} \backslash X\right) . \text { Let }} H_{1}^{\prime}(X):=H_{1}(X) / d=0}
$$

Conjecture

Let X be a compact, 1-dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U:=\left\{[\chi] \in \widehat{H_{1}}(X) \mid \chi \in S\right\}$ 'spans' $\widehat{H_{1}}(X)$.

