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Overview

Wild spaces have a huge fundamental group π1
and 1st homology group

(1st Homology group H1 = abelianization of π1)

We are going to tame H1 by removing some ‘redundancy’

... using experience from infinite graph theory
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Example: MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

C(G): the cycle space of G = H1(G) (simlicial or singular homology)=
Abel(π1)

simple: no edge appears in more than two generators.
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Example: MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

C(G): the cycle space of G = H1(G) (simlicial or singular homology)=
Abel(π1)

simple: no edge appears in more than two generators.

But using the right homology
(topological cycle space of Diestel & Kühn) ...:

Theorem (Bruhn & Stein ’05)
... verbatim generalisation for locally finite
G.
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A new homology for metric spaces

Idea: put a natural distance function on H1(X ) ...

... and identify elements at distance 0.

a

b

more precisely: d(a, b) := inf (area you need to make a ≈ b)
more precisely: d(a, b) := inf

X
isom
↪→ X ′

a≈b in X ′
area(X ′\X )

Let H ′
1(X ):= H1(X )/d=0

and, if you like, let Ĥ1(X ) be its completeion.
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Examples
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Cycle decompositions

->

->

Can you make a theorem out of this observation?
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Cycle decompositions - finite graphs

Proposition

Every element of C(G) can be written as a
union of a set of edge-disjoint cycles.

->
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Cycle decompositions - infinite graphs

Theorem (Diestel & Kühn)

Every element of the topological cycle space C(G) of a locally
finite graph G can be written as a union of a set of edge-disjoint
circles.

One of many classical theorems recently extended to infinite
graphs using our new homology, the topological cycle space
C(G) in an ongoing series of >30 papers by Diestel, Kühn,
Bruhn, Stein, G, Sprüssel, Richter, Vella, et. al.
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What about more continuous spaces?

Proposition
Every element of C(G) can

be written as a union of a
set of edge-disjoint cycles.

?
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The Theorem

Proposition
Every element of C(G) can

be written as a union of a
set of edge-disjoint cycles.

?

Theorem (G’ 09)

For every compact metric space X and C ∈ Ĥ1(X ), there is a
σ-representative (zi)i∈N of C that minimizes the length

∑
i `(zi)

among all representatives of C.
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Proof sketch
Theorem (G’ 09)

For every compact metric space X and C ∈ Ĥ1(X ), there is a
σ-representative (zi)i∈N of C that minimizes the length

∑
i `(zi)

among all representatives of C.

Specify a subset of well-behaved elements of Ĥ1(X ),
called primitive elements;
Prove the statement for primitive elements;
Show that every other element can be expressed as a sum
of primitive elements.

We say that C ∈ Ĥ1(X ) splits if there are A, B 6= 0 ∈ Ĥ1(X ) with

C = A + B, and
`(C) = `(A) + `(B).

Then C is primitive if it doesn’t split.
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called primitive elements;
Prove the statement for primitive elements;
Show that every other element can be expressed as a sum
of primitive elements.
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An intermediate result

Let (Γ,+) be an abelian metrizable topological group, and
suppose a function ` : Γ → R+ is given satisfying the following
properties

`(a) = 0 iff a = 0;
`(a + b) ≤ `(a) + `(b) for every a, b ∈ Γ;
if b = lim ai then `(b) ≤ lim inf `(ai);
Some “isoperimetric inequality” holds: e.g.
d(a, 0) ≤ U`2(a) for some fixed U and for every a ∈ Γ.

Then every element of Γ is a (possibly infinite) sum of primitive
elements.
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The Conjecture

Theorem (MacLane ’37)
A finite graph G is planar iff
C(G) has a simple
generating set.

?

Conjecture
Let X be a compact, 1–dimensional, locally connected, metrizable
space that has no cut point. Then X is planar iff there is a simple
set S of loops in X and a metric d inducing the topology of X so
that the set U := {[χ] ∈ Ĥ1(X ) | χ ∈ S} ‘spans’ Ĥ1(X ).
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`-TOP

`-TOP

let G = (V , E) be any graph
give each edge a length `(e)

this induces a metric: d(v , w) := inf{`(P) | P is a v -w path}
let |G|` be the completion of the corresponding metric space

Theorem (Gromov ’87)
For every compact metric space X there is a locally finite
graph G and ` : E → R+ such that the boundary of |G|` is
isometric to X.
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`-TOP

let G = (V , E) be any graph
give each edge a length `(e)
this induces a metric: d(v , w) := inf{`(P) | P is a v -w path}
let |G|` be the completion of the corresponding metric space

Problem
Does every compact metrizable space X admit a metric
such that Ĥ1(X ) = Ȟ1(X )?

Theorem (Gromov ’87)
For every compact metric space X there is a locally finite
graph G and ` : E → R+ such that the boundary of |G|` is
isometric to X.
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Applications of |G|`

Applications of |G|` aa(`-TOP)

used by Floyd to study Kleinian groups (Invent. math. ’80)
used by Benjamini and Schramm for Random Walks/harmonic
functions/sphere Packings (Invent. math. ’96, Preprint ’09)
application in the study of the Cycle Space of an infinite graph
(G & Sprüssel Electr. J. Comb)
applied to Electrical Networks (G, JLMS ’10)
Carlson studied the Dirichlet Problem at the boundary (Analysis
on graphs and its applications)
used by Colin de Verdiere et. al. to study Laplace and
Schrödinger operators

All above authors “discovered” |G|` independently!
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Further Problems

Generalise to higher dimensions

Generalise other graph-theoretical theorems to
continua/fractals
Can you modify Ĥ1 to obtain a homology that is invariant
under homotopy–equivalence?
Try to ‘tame’ π1 by similar methods
Compute Ĥ1 for your favourite space

Sources:
AG: “Cycle decompositions: from graphs to continua”,
arxiv.org/abs/1003.5115
AG: “Graph topologies induced by edge lengths”
http://arxiv.org/abs/0903.1744

These slides are available online
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Sources:
AG: “Cycle decompositions: from graphs to continua”,
arxiv.org/abs/1003.5115
AG: “Graph topologies induced by edge lengths”
http://arxiv.org/abs/0903.1744

These slides are available online
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Summary
Theorem (G’ 09)

For every compact metric space X and C ∈ Ĥ1(X ), there is a
representative (zi)i∈N of C that minimizes the length

∑
i `(zi) among

all representatives of C.

a

b

d(a, b) := inf
X

isom
↪→ X′

a≈b in X ′
area(X ′\X ). Let H ′

1(X ):= H1(X )/d=0

Conjecture

Let X be a compact, 1–dimensional, locally connected, metrizable space
that has no cut point. Then X is planar iff there is a simple set S of loops
in X and a metric d inducing the topology of X so that the set
U := {[χ] ∈ Ĥ1(X ) | χ ∈ S} ‘spans’ Ĥ1(X ).
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