The planar cubic Cayley graphs

Agelos Georgakopoulos

Technische Universität Graz

Paris, 17.02.11

Cayley graphs

$$
\left\langle\alpha, \beta \mid, \beta^{2}, \alpha^{4},(\alpha \beta)^{2}\right\rangle
$$

Cayley graphs

$$
\left\langle\alpha, \beta \mid, \beta^{2}, \alpha^{4},(\alpha \beta)^{2}\right\rangle
$$

Let Γ be a group, and S a generating set of Γ. Define the corresponding Cayley graph $G=\operatorname{Cay}(\Gamma, S)$ by:

Cayley graphs

$$
\left\langle\alpha, \beta \mid, \beta^{2}, \alpha^{4},(\alpha \beta)^{2}\right\rangle
$$

Let Γ be a group, and S a generating set of Γ. Define the corresponding Cayley graph $G=\operatorname{Cay}(\Gamma, S)$ by:

- $V(G)=\Gamma$,

Cayley graphs

$$
\left\langle\alpha, \beta \mid, \beta^{2}, \alpha^{4},(\alpha \beta)^{2}\right\rangle
$$

Let Γ be a group, and S a generating set of Γ. Define the corresponding Cayley graph $G=\operatorname{Cay}(\Gamma, S)$ by:

- $V(G)=\Gamma$,
- for every $g \in \Gamma$ and $s \in\{a, b, c, \ldots\}$, put in an edge:

$$
g \xrightarrow{g} g s
$$

Sabidussi's Theorem

Theorem (Sabidussi's Theorem)

A properly edge-coloured digraph is a Cayley graph iff for every $x, y \in V(G)$ there is a colour-preserving automorphism mapping x to y.
properly edge-coloured := no vertex has two incoming or two outgoing edges with the same colour

Let Γ be a group, and S a generating set of Γ. Define the corresponding Cayley graph $G=\operatorname{Cay}(\Gamma, S)$ by:

- $V(G)=\Gamma$,
- for every $g \in \Gamma$ and $s \in\{a, b, c, \ldots\}$, put in an edge:

Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^{2}.

planar group :=a group having at least 1 planar Cayley graph.

The Cayley complex

Let $\Gamma=\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ be a group presentation. Define the corresponding simplified Cayley complex $C C\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ by:

The Cayley complex

Let $\Gamma=\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ be a group presentation. Define the corresponding simplified Cayley complex $C C\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ by:

- $V(G)=\Gamma$,
- for every $g \in \Gamma$ and $s \in\{a, b, c, \ldots\}$, put in an edge: $\stackrel{g}{\bullet} \stackrel{g s}{\bullet}$

The Cayley complex

Let $\Gamma=\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ be a group presentation. Define the corresponding simplified Cayley complex $C C\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ by:

- $V(G)=\Gamma$,
- for every $g \in \Gamma$ and $s \in\{a, b, c, \ldots\}$, put in an edge: $\stackrel{g}{\bullet} \stackrel{g s}{\bullet}$
- for every closed walk C induced by a relator R_{i}, glue in a disc along C.

The Cayley complex

Let $\Gamma=\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ be a group presentation. Define the corresponding simplified Cayley complex $C C\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ by:

- $V(G)=\Gamma$,
- for every $g \in \Gamma$ and $s \in\{a, b, c, \ldots\}$, put in an edge: $\stackrel{s}{\bullet}$ gs
- for every closed walk C induced by a relator R_{i}, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

The Cayley complex

Let $\Gamma=\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ be a group presentation. Define the corresponding simplified Cayley complex $C C\left\langle a, b, c, \ldots \mid R_{1}, R_{2} \ldots\right\rangle$ by:

- $V(G)=\Gamma$,
- for every $g \in \Gamma$ and $s \in\{a, b, c, \ldots\}$, put in an edge: $\stackrel{g}{\bullet}$ gs
- for every closed walk C induced by a relator R_{i}, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Yes!

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Theorem (Whitney '32)

Let G be a 3-connected plane graph. Then every automorphism of G extends to a homeomorphism of the sphere.

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$
Let X be the corresponding simplified Cayley complex.

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$
Let X be the corresponding simplified Cayley complex.
X is homeomorphic to S^{2}

Proving Maschke's Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- Generators: the edge-colours of G;
- Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$
Let X be the corresponding simplified Cayley complex.
X is homeomorphic to S^{2}
Since $\Gamma(G)$ acts on X, we have:
Theorem (Maschke 1886)
Every finite planar group is a group of homeomorphisms of S^{2}.

The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)
 Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^{2} or \mathbb{H}^{2}.

The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)
Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^{2} or \mathbb{H}^{2}.

Planar groups and fundamental groups of surfaces

Planar groups $<->$ fundamental groups of surfaces

Planar groups and fundamental groups of surfaces

Planar groups $<->$ fundamental groups of surfaces
... general classical theory, but only for groups with a planar simplified Cayley complex

Planar groups and fundamental groups of surfaces

Planar groups $<->$ fundamental groups of surfaces
... general classical theory, but only for groups with a planar simplified Cayley complex

What about the other ones?

Planar groups and fundamental groups of surfaces

Planar groups $<->$ fundamental groups of surfaces
... general classical theory, but only for groups with a planar simplified Cayley complex

What about the other ones?

Theorem (G '10)
 A group has a planar simplified Cayley complex if and only if it has a VAP-free Cayley graph.

What about the non VAP-free ones?

Open Problems:

What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington
\& Watkins/ B. \&Mohar)
Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)
Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington
\& Watkins/ B. \&Mohar)
Every planar
3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G \& Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)
Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington
\& Watkins/ B. \&Mohar)
Every planar
3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G \& Mohar)

Is every planar 3-connected Cayley graph hamiltonian?
... and what about all the classical theory?

Classification of the cubic planar Cayley graphs

Theorem (G '10)
Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.

Classification of the cubic planar Cayley graphs

Theorem (G'10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.
Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.

What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington
\& Watkins)
Every planar
3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G \& Mohar)

Is every planar 3-connected Cayley graph hamiltonian?
... and what about all the classical theory?

Examples

Examples

Examples

Examples

Examples

Corollary (G '10

Every planar cubic Cayley graph has an almost planar Cayley complex.

Examples

Corollary (G \& Hamann '11)

Every planar Cayley graph has an almost planar Cayley complex.

Examples

Corollary (G \& Hamann '11)

Every planar Cayley graph has an almost planar Cayley complex... maybe

Cayley graphs without finite face boundaries

Conjecture (Bonnington \& Watkins)

Every planar

3-connected locally finite transitive graph has at least one face bounded by a cycle.

Cayley graphs without finite face boundaries

Conjecture (Bonnington \& Watkins)

Every planar

3-connected locally finite transitive graph has at least one face bounded by a cycle.

FALSE!

Cayley graphs without finite face boundaries

Cayley graphs without finite face boundaries

Cayley graphs without finite face boundaries

Spot the societies!

Spot the societies!

Stallings' Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Stallings' Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Stallings' Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Group splittings by topological minors

Group splittings by topological minors

Conjecture

Let $G=\operatorname{Cay}(\Gamma, S)$ be a Cayley graph with
>1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Group splittings by topological minors

Conjecture

Let $G=\operatorname{Cay}(\Gamma, S)$ be a Cayley graph with
>1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Group splittings by topological minors

Conjecture

Let $G=\operatorname{Cay}(\Gamma, S)$ be a Cayley graph with
>1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Group splittings by topological minors

Conjecture

Let $G=\operatorname{Cay}(\Gamma, S)$ be a Cayley graph with
>1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Corollary (G '10)

True for planar cubic Cayley graphs.

Summary

$\kappa(G)=3$,
G is 1-ended or finite,
with two generators
$\kappa(G)=3$,
G is 1-ended or finite, with three generators

$\kappa(G)=3$,

G is multi-ended, with two generators
12. $G \cong C a y\left\langle a, b \mid b^{2}, a^{n},(a b)^{m}\right\rangle, n \geq 3, m \geq 2$
13. $G \cong C a y\left\langle a, b \mid b^{2}, a^{n},\left(a b a^{-1} b\right)^{m}\right\rangle, n \geq 3, m \geq 1$
14. $G \cong \operatorname{Cay}\left\langle a, b \mid b^{2},\left(a^{2} b\right)^{m}\right\rangle, m \geq 1$
15. $G \cong C a y\left\langle a, b \mid b^{2},\left(a^{2} b a^{-2} b\right)^{m}\right\rangle, m \geq 1$
16. $G \cong \operatorname{Cay}\left\langle b, c, d \mid b^{2}, c^{2}, d^{2},(b c d)^{n}\right\rangle, n \geq 1$
17. $G \cong C a y\left\langle b, c, d \mid b^{2}, c^{2}, d^{2},(c b c d b d)^{n}\right\rangle, n \geq 1$
18. $G \cong \operatorname{Cay}\left\langle b, c, d \mid b^{2}, c^{2}, d^{2},(b c)^{n},(b d c d)^{m}\right\rangle, n \geq 2, m \geq 1$
19. $G \cong C a y\left\langle b, c, d \mid b^{2}, c^{2}, d^{2},(b c)^{n},(c d)^{m},(d b)^{p}\right\rangle, n, m, p \geq 2$
20. $G \cong \operatorname{Cay}\left\langle a, b \mid b^{2},\left(a^{2} b\right)^{m} ; a^{2 n}\right\rangle, n \geq 3, m \geq 2$
21. $G \cong C a y\left\langle a, b \mid b^{2},\left(a^{2} b a^{-2} b\right)^{m} ; a^{2 n}\right\rangle, n \geq 3, m \geq 1$
22. $G \cong C a y\left\langle a, b \mid b^{2}, a^{2} b a^{-2} b ;\left(b a b a^{-1}\right)^{n}\right\rangle, n \geq 2$
23. $G \cong C a y\left\langle a, b \mid b^{2},\left(a^{2} b a^{-2} b\right)^{m} ;\left(b a b a^{-1}\right)^{n}\right\rangle, n, m, p \geq 2$
24. $G \cong C a y\langle a, b|$ 朝, $\left._{2},\left(a^{2} b\right)^{2} ;(\overline{a b})^{2 m}\right\rangle, m \geqq 2$ 三 \quad —

