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Our setup: `-TOP

`-TOP

let G = (V , E) be any graph
give each edge a length `(e)

this induces a metric: d(v , w) := inf{`(P) | P is a v -w path}
let |G|` be the completion of the corresponding metric space

Theorem (G ’06 (easy))

If
∑

e∈E(G) `(e) < ∞ then |G|` ≈ |G|.
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Applications of |G|`
Applications of |G|` aa(`-TOP)

used by Floyd to study Kleinian groups (Invent. math. ’80)
Gromov showed that his hyperbolic compactification is a special
case of |G|` (Hyperbolic Groups... ’87)
used by Benjamini and Schramm for Random Walks/harmonic
functions/sphere Packings (Invent. math. ’96, Preprint ’09)
application in the study of the Cycle Space of an infinite graph
(G & Sprüssel, Electr. J. Comb)
application in Electrical Networks (G, JLMS ’10)
Carlson studied the Dirichlet Problem at the boundary (Analysis
on graphs and its applications, ’08)
Colin de Verdiere et. al. use it to study self-adjointness of the
Laplace and Schrödinger operators (Mathematical Physics,
Analysis and Geometry, ’10)

All above authors “discovered” |G|` independently!
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Our plan

Problem
Construct and study brownian motion on |G|`.

Theorem (G ’06 (easy))

If
∑

e∈E(G) `(e) < ∞ then |G|` ≈ |G|.

Strategy: construct brownian motion on |G|` as a limit of
brownian motions on finite subgraphs.
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Our three topologies

Level 1: The graph |G|` (with boundary)

Level 2:

The space of sample paths
C = C([0, T ] → |G|`)
with the metric
d♥(b, c) := supx∈|G| d`(b(x), c(x))

Level 3:
The space M = M(C) of measures on C
with the weak topology, i.e. basic
open sets of an element µ are of the form{

ν ∈M : |
∫

fidν −
∫

fidµ| < εi , i = 1, . . . , k
}

where the fi are bounded continuous real functions on C

Agelos Georgakopoulos
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Convergence in M

Let Gn be a sequence exhausting G.

Let C, µn be the brownian motion on Gn.

Theorem (classic)

Let Γ ⊆M. Then Γ is compact iff for every ε there is a function
ωε(δ), with ω → 0 as δ → 0, such that
µ({x : wx(δ) ≤ ωε(δ) for all δ}) > 1− ε/2 for all µ ∈ Γ,

where wx(δ) := sup|t−s|<δ |x(t)− x(s)| is the modulus of continuity of x.

=> {µn}n has an accumulation point

Remark: It is known that M(X ) is compact iff X is compact; this
would have allowed us to circumvent the above theorem if C were
compact, but it isn’t (although |G|` is).

Agelos Georgakopoulos
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brownian motion on |G|`

Theorem (G & K. Kolesko ’11+)

For every G, ` such that
∑

e∈E `(e) < ∞, there is a brownian
motion B` on |G|` with the following properties

it behaves locally like standard BM on R
It is the limit of SRW’s of finite subgraphs;
It is unique;
It is recurrent (thus its sample paths are ‘wild’);
Transition probabilities coincide with potentials of the
corresponding non-elusive electrical current.

Agelos Georgakopoulos
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The discrete Network Problem

The setup:

A graph G = (V , E)
a function r : E → R+ (the resistances)
a source and a sink p, q ∈ V
a constant I ∈ R (the intensity of the current)

The problem:

Find a p-q flow in G with intensity I that satisfies
Kirchhoff’s cycle law:

C ∑
~e∈~E(C)

v(~e) = 0

where v(~e) := f (~e)r(e) (Ohm’s law)

Agelos Georgakopoulos
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Random Walks & Electrical networks

Every edge e has a weight c(e)

Go from x to y with probability

Px→y :=
c(xy)
c(x)

where c(x) :=
∑

xv∈E c(xv)

p

q

x
y

Ppq(x) := the probability that if you start in x you will hit p before q.

Connect a source of voltage 1 to p, q

Ppq(x) = P(x)

Agelos Georgakopoulos
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Non-elusive flows

p q

The solution is not necessarily unique!

Non-elusive flow:
The net flow along any
such cut must be zero:

=

p

q

Agelos Georgakopoulos



main Electrical Networks Wild circles

Non-elusive flows

p q

The solution is not necessarily unique!

Non-elusive flow:
The net flow along any
such cut must be zero:

=

p

q

Agelos Georgakopoulos



main Electrical Networks Wild circles

Non-elusive flows

p q

The solution is not necessarily unique!

Non-elusive flow:
The net flow along any
such cut must be zero:

=

p

q

Agelos Georgakopoulos



main Electrical Networks Wild circles

Non-elusive flows

p q

The solution is not necessarily unique!

Non-elusive flow:
The net flow along any
such cut must be zero:

=

p

q

Agelos Georgakopoulos



main Electrical Networks Wild circles

Uniqueness of non-elusive currents

Theorem (G ’08)

In a network with
∑

e∈E r(e) < ∞ there is a unique non-elusive
flow with finite energy that satisfies Kirchhoff’s cycle law.

Energy of f : 1
2

∑
e∈E f 2(e)r(e)
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Wild circles

A wild circle

i.e. a homeomorphic image of S1 in |G|
(discovered by Diestel & Kühn)

Contains ℵ0 double-rays aranged like the rational numbers

The “gaps” between the double-rays are filled by a
Cantor set of ends
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Wild circles

A wild circle i.e. a homeomorphic image of S1 in |G|

More than 30 papers written on wild circles & paths relating to

Cycle space (Homology)
Hamilton circles
Extremal graph theory
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