Infinite cycles in graphs

Agelos Georgakopoulos

Mathematisches Seminar Universität Hamburg

Marburg, 2.5.2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Many finite theorems involving paths or cycles fail for infinite graphs:

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

Many finite theorems involving paths or cycles fail for infinite graphs:

Euler's theorem

Many finite theorems involving paths or cycles fail for infinite graphs:

- Euler's theorem
- MacLane's planarity criterion

Many finite theorems involving paths or cycles fail for infinite graphs:

- Euler's theorem
- MacLane's planarity criterion
- the Tutte/Nash-Williams tree packing theorem

Many finite theorems involving paths or cycles fail for infinite graphs:

- Euler's theorem
- MacLane's planarity criterion
- the Tutte/Nash-Williams tree packing theorem
- ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Many finite theorems involving paths or cycles fail for infinite graphs:

- Euler's theorem
- MacLane's planarity criterion
- the Tutte/Nash-Williams tree packing theorem
- ...
- all hamilton-cycle theorems

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Many finite theorems involving paths or cycles fail for infinite graphs:

- Euler's theorem
- MacLane's planarity criterion
- the Tutte/Nash-Williams tree packing theorem
- ...
- all hamilton-cycle theorems

 \Rightarrow need more general notions of paths and cycles

Classical approach: accept double-rays as infinite cycles

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Classical approach: accept double-rays as infinite cycles

 $\underbrace{ \cdots \bullet \bullet \bullet \bullet \cdots }$

This approach only extends finite theorems in very restricted cases:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Classical approach: accept double-rays as infinite cycles

 $\underbrace{ \cdots \bullet \bullet \bullet \bullet \cdots }$

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

Classical approach: accept double-rays as infinite cycles

 $\leftarrow \cdots \bullet \bullet \bullet \bullet \cdots \bullet$

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ...

Classical approach: accept double-rays as infinite cycles

 $\leftarrow \cdots \bullet \bullet \bullet \bullet \cdots \bullet$

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ... unless it is 3-divisible.

Compactifying by Points at Infinity

A 3-divisible graph

<ロ> (四) (四) (三) (三) (三)

Compactifying by Points at Infinity

A 3-divisible graph can have no spanning double ray

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Compactifying by Points at Infinity

A 3-divisible graph can have no spanning double ray

ヘロト ヘ戸ト ヘヨト ヘヨト

Compactifying by Points at Infinity

A 3-divisible graph can have no spanning double ray

... but a Hamilton cycle?

イロト イポト イヨト イヨト

end: equivalence class of rays

two rays are equivalent if no finite vertex set separates them

ヘロン ヘアン ヘビン ヘビン

-20

Ends

end: equivalence class of rays

two rays are equivalent if no finite vertex set separates them

・ロト ・ 一下・ ・ ヨト ・ ヨト

æ

Ends

end: equivalence class of rays

two rays are equivalent if no finite vertex set separates them

Agelos Georgakopoulos Infinite cycles in graphs

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Ends

end: equivalence class of rays

two rays are equivalent if no finite vertex set separates them

The End Compactification

Agelos Georgakopoulos Infinite cycles in graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The End Compactification

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The End Compactification

Every ray converges to its end

æ

ヘロア ヘビア ヘビア・

The End Compactification

|G|

Every ray converges to its end

ヘロア ヘビア ヘビア・

æ

Circle: A homeomorphic image of S^1 in |G|.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Circle: A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Circle: A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices (and all ends?)

Agelos Georgakopoulos Infinite cycles in graphs

Circle: A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices, and thus also all ends.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Circle: A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices, and thus also all ends.

ヘロト ヘ回ト ヘヨト ヘヨト

Circle: A homeomorphic image of S^1 in |G|.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Circle: A homeomorphic image of S^1 in |G|.

the wild circle of Diestel & Kühn

・ロト ・ 一下・ ・ ヨト ・ ヨト

-20

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected <u>1-ended</u> graph has a Hamilton circle.

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof?

Agelos Georgakopoulos Infinite cycles in graphs

Agelos Georgakopoulos Infinite cycles in graphs

Agelos Georgakopoulos Infinite cycles in graphs

Agelos Georgakopoulos Infinite cycles in graphs

Agelos Georgakopoulos Infinite cycles in graphs

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の Q @

Hilbert's space filling curve:

a sequence of injective curves with a non-injective limit

크 > 크

Structure of the Finite Proof

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

Agelos Georgakopoulos Infinite cycles in graphs

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Structure of the Finite Proof

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

 make all vertex degrees even by deleting some edges and doubling some others

Structure of the Finite Proof

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour

Structure of the Finite Proof

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

you need a topological Euler tour

イロト イポト イヨト イヨト 三油

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

 you need a topological Euler tour, thus you have to guarantee even degree at ends too

ヘロト ヘアト ヘビト ヘビト

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

- you need a topological Euler tour, thus you have to guarantee even degree at ends too
- the (topological) Euler tour has to be injective at ends

ヘロン 人間 とくほとく ほとう

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

- you need a topological Euler tour, thus you have to guarantee even degree at ends too
- the (topological) Euler tour has to be injective at ends
- deleting edges may change the end topology

Structure of the Infinite Proof

Agelos Georgakopoulos Infinite cycles in graphs

Structure of the Infinite Proof

Agelos Georgakopoulos Infinite cycles in graphs

Structure of the Infinite Proof

Agelos Georgakopoulos Infinite cycles in graphs

Structure of the Infinite Proof

Agelos Georgakopoulos Infinite cycles in graphs

Structure of the Infinite Proof

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

- make all vertex degrees even by deleting some edges and doubling some others
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

- you need a topological Euler tour, thus you have to guarantee even degree at ends too
- the (topological) Euler tour has to be injective at ends
- deleting edges may change the end topology
Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

イロト イポト イヨト イヨト 一座

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem

Prove that every connected Cayley graph of a finitely generated group Γ has a Hamilton circle unless Γ is the amalgamated product of more than k groups over a subgroup of order k.

ヘロト ヘ戸ト ヘヨト ヘヨト