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The Riemann mapping theorem

Theorem (Riemann? 1851, Carathéodory 1912)
For every simply connected open set Ω & C,Ω , ∅, there is a
bijective conformal map from Ω onto the open unit disk.

Theorem (Koebe 1920)
For every open set Ω & C,Ω , ∅ with finitely many

boundary components, there is a bijective
conformal map from Ω onto a circle domain.
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The circle packing theorem

The Koebe-Andreev-Thurston circle packing theorem

For every finite planar graph G, there is a circle packing in the
plane (or S2) with nerve G.
The packing is unique (up to Möbius transformations) if G is a
triangulation of S2.
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Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem
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Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion 

to a triangulation of 52, and a combinatorially equivalent circle packing; (a)-(c) are from Oded's 

thesis; thanks to Andrey Mishchenko for creating (d) 
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[S. Rohde: “Oded Schramm: From Circle Packing to SLE”, ’10]
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Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)
... for every finite planar graph G, there is a
square tiling with incidence graph G ...
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Properties of square tilings

every edge is mapped to a square;
vertices correspond to horizontal segments tangent with
their edges;
there is no overlap of squares, and no ‘empty’ space left;
the square tiling of the dual of G can be obtained from that
of G by a 90◦ rotation.
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The construction of square tilings

Think of the graph as an electrical network;

impose an electrical current from p to q;
let the square corresponding to edge e have side length
the flow i(e);
place each vertex x at height equal to the potential h(x);
use a duality argument to determine the width coordinates.
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The construction of square tilings

[J. W. Cannon, W. J. Floyd, and W. R. Parry: “Squaring rectangles:
The finite Riemann mapping theorem."]
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The square tilings of Benjamini & Schramm

Theorem (Benjamini & Schramm ’96)
Every transient (infinite) graph G of bounded degree that has a
uniquely absorbing embedding in the plane admits a square tiling.

Moreover, random walk on G converges a. s. to a point in C.

C
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The Poisson integral representation formula

The classical Poisson formula

h(z) =
∫ 2π

0
ĥ(θ)P(z, θ)dθ

=

∫ 2π

0
ĥ(θ)dνz(θ)

where P(z, θ) := 1−|z |2

|eiθ−z |2 ,

recovers every continuous harmonic
function h on D from its boundary
values ĥ on the circle ∂D.
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values ĥ on the circle ∂D.

Agelos Georgakopoulos



The boundary of the square tiling coincides with the
Poisson boundary

Can the bounded harmonic functions on a plane graph
G be expressed as a Poisson-like integral using C?

A function h : V (G)→ R,
is harmonic, if h(x) =

∑
y∼x h(y )/d(x).
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The boundary of the square tiling coincides with the
Poisson boundary

Question (Benjamini & Schramm ’96)
Does the Poisson boundary of every graph as above
coincide with the boundary of its square tiling?

Theorem (G ’12)

Yes!
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The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (PG,Σ), and

- a family of probability measures {νz , z ∈ VG},
such that

every bounded harmonic function h can be obtained by

h(z) =
∫
PG

ĥ(η)dνz(η)

this ĥ ∈ L∞(PG) is unique up to modification on a null-set;
conversely, for every ĥ ∈ L∞(PG) the function
z 7→

∫
PG

ĥ(η)dνz(η) is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry
between the Banach spaces H∞(G) and L∞(PG).
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The theorem

Theorem (G ’12)
For every bounded degree graph admitting a square
tiling, the Poisson boundary coincides with C.
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Probabilistic interpretation of the tiling

Lemma (G ’12)
Let C be a ‘horizontal’ circle in the tiling T of G, and let B the

set of points of G at which C ‘dissects’ T . Then the widths of
the points of B in T coincide with the probability distribution of
the first visit to B by brownian motion on G starting at o.

Agelos Georgakopoulos
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Probabilistic interpretation of the tiling

Lemma
For every ‘meridian’ M in T , the probability

that brownian motion on G starting at o will
‘cross’ M clockwise equals the probability to
cross M counter-clockwise.

C
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A corollary

Conjecture (Northshield ’93)
Let G be an accumulation-free plane, non-amenable graph
with bounded vertex degrees. Then the Northshield circle of G
is a realisation of its Poisson boundary.

Theorem (G ’13)

Indeed.
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Hyperbolic planar graphs

Theorem (G ’13)
Let G be an infinite, Gromov-hyperbolic, non-amenable,
1-ended, plane graph with bounded degrees and no infinite
faces. Then the following 5 boundaries of G (and the
corresponding compactifications of G) are canonically
homeomorphic to each other:

the hyperbolic boundary
the Martin boundary [Ancona]
the boundary of the square tiling
the Northshield circle ∂∼(G) and
the transience boundary ∂'(G) [Northshield].

Agelos Georgakopoulos



Open problems

Conjecture (G)
Let M be a complete, simply connected Riemannian surface
with sectional curvatures bounded between two negative
constants. Let f : M → D be a conformal map. Then for every
1-way infinite geodesic γ in M, the image f (γ) converges to a
point in the boundary S1 of D, and this convergence determines
a homeomorphism from the sphere at infinity of M to S1.
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Open problems

Problem
Is every planar graph with the Liouville property amenable?

–For Cayley graphs this is true even without planarity
[Kaimanovich & Vershik];
–for general graphs it is false even assuming bounded degrees
[e.g. Benjamini & Kozma].

Problem
Is there a planar, Gromov-hyperbolic graph with bounded
degrees, no infinite faces, and the Liouville property?
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Here come some
‘geometric’ random graphs
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Energy and Douglas’ formula

The classical Douglas formula

E(h) =
∫ 2π

0

∫ 2π

0
(ĥ(η) − ĥ(ζ))2Θ(z, η)dη

calculates the (Dirichlet) energy of a
harmonic function h on D from its
boundary values ĥ on the circle ∂D.
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Energy in finite electrical networks

a

b

a

b

Cab

E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab,

where Cab = d(a)Pa(b)

Compare with Douglas: E(h) =
∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(z, η)dη
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0 (ĥ(η) − ĥ(ζ))2Θ(z, η)dη

Agelos Georgakopoulos



Energy in finite electrical networks

a

b

a

b

Cab

E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab,

where Cab = d(a)Pa(b)

Compare with Douglas: E(h) =
∫ 2π
0

∫ 2π
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The energy of harmonic functions

Theorem (G & V. Kaimanovich ’14+)
For every locally finite network G, there is a measure C on
P2(G) such that for every harmonic function u the energy E(u)
equals ∫

P2

(
û(η) − û(ζ)

)2
dC(η, ζ).

This is a discrete version of a result of [Doob ’62]
on Green spaces (or Riemannian manifolds), which generalises
Douglas’ formula E(h) =

∫ 2π
0
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)2
dC(η, ζ).

This is a discrete version of a result of [Doob ’62]
on Green spaces (or Riemannian manifolds), which generalises
Douglas’ formula E(h) =

∫ 2π
0

∫ 2π
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Summary
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Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion 

to a triangulation of 52, and a combinatorially equivalent circle packing; (a)-(c) are from Oded's 

thesis; thanks to Andrey Mishchenko for creating (d) 
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