Discrete Riemann mapping and the Poisson boundary

Agelos Georgakopoulos
the university of WARWICK

31/1/14

The Riemann mapping theorem

Theorem (Riemann? '1851, Carathéodory 1912)

For every simply connected open set $\Omega \varsubsetneqq \mathbb{C}, \Omega \neq \emptyset$, there is a bijective conformal map from Ω onto the open unit disk.

The Riemann mapping theorem

Theorem (Riemann? '1851, Carathéodory 1912)

For every simply connected open set $\Omega \varsubsetneqq \mathbb{C}, \Omega \neq \emptyset$, there is a bijective conformal map from Ω onto the open unit disk.

Theorem (Koebe 1908)

For every open set $\Omega \varsubsetneqq \mathbb{C}, \Omega \neq \emptyset$ with finitely many boundary components, there is a bijective conformal map from Ω onto a circle domain.

The circle packing theorem

The Koebe-Andreev-Thurston circle packing theorem
For every finite planar graph G, there is a circle packing in the plane (or S^{2}) with nerve G.
The packing is unique (up to Möbius transformations) if G is a triangulation of S^{2}.

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Agelos Georgakopoulos

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing <= Conformal map

Agelos Georgakopoulos

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing => Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing => Conformal map

Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing => Conformal map

[S. Rohde: "Oded Schramm: From Circle Packing to SLE", '10]

Agelos Georgakopoulos

Journal of Combinatorial Theory

Seriab

Square Tilings

Theorem (Brooks, Smith, Stone \& Tutte '40)
... for every finite planar graph G, there is a square tiling with incidence graph G...

Agelos Georgakopoulos

Properties of square tilings

Properties of square tilings

- every edge is mapped to a square;

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no 'empty' space left;

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no 'empty' space left;
- the square tiling of the dual of G can be obtained from that of G by a 90° rotation.

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no 'empty' space left;
- the square tiling of the dual of G can be obtained from that of G by a 90° rotation.

The construction of square tilings

- Think of the graph as an electrical network;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;
- place each vertex x at height equal to the potential $h(x)$;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;
- place each vertex x at height equal to the potential $h(x)$;
- use a duality argument to determine the width coordinates.

The construction of square tilings

Agelos Georgakopoulos

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;
- place each vertex x at height equal to the potential $h(x)$;
- use a duality argument to determine the width coordinates.

The construction of square tilings

[J. W. Cannon, W. J. Floyd, and W. R. Parry: "Squaring rectangles:
The finite Riemann mapping theorem. "]

The construction of square tilings

[J. W. Cannon, W. J. Floyd, and W. R. Parry: "Squaring rectangles:

 The finite Riemann mapping theorem. "]"... Riemann, like Klein in the passage quoted from Poincare, may have considered the quadrilateral as a metallic conducting plate with battery terminals connected to its 'top' and 'bottom'. "The current must pass" as Klein is supposed to have said. The current flow lines, connecting top to bottom, would have filled the quadriateral from side to side one line through each point of the quadrilateral. Equipotential lines, connecting side to side, would likewise have filled the quadrilateral from top to bottom. The pair of families would meet one another orthogonally and give rectilinear flat coordinates for the quadrilateral."

Journal of Combinatorial Theory

Seriab

The square tilings of Benjamini \& Schramm

Theorem (Benjamini \& Schramm '96)

Every (transient) graph G of bounded degree that admits a uniquely absorbing embedding in the plane admits a square tiling.

The square tilings of Benjamini \& Schramm

Theorem (Benjamini \& Schramm '96)

Every (transient) graph G of bounded degree that admits a uniquely absorbing embedding in the plane admits a square tiling. Moreover, random walk on G converges a. s. to a point in C.

The boundary of the square tiling coincides with the Poisson boundary

Question (Benjamini \& Schramm '96)

Does the Poisson boundary of every graph as above coincide with the boundary of its square tiling?

The boundary of the square tiling coincides with the Poisson boundary

Question (Benjamini \& Schramm '96)

Does the Poisson boundary of every graph as above coincide with the boundary of its square tiling?

Theorem (G '12)
Yes.

This is not about groups

The theorem

Theorem (G '12)

For every bounded degree graph admitting a square tiling, the Poisson boundary coincides with C.

Agelos Georgakopoulos

The theorem

Theorem (G '12)

For every bounded degree graph admitting a square tiling, the Poisson boundary coincides with C.
[Angel, Barlow, Gurel-Gurevich \& Nachmias] recently identified the Poisson \& Martin boundary of any bounded degree, transient, 1 -ended triangulation of the plane with the boundary of its circle packing.

Sharp harmonic functions

A harmonic function $f: V(G) \rightarrow[0,1]$ is called sharp, if its values $f\left(X_{n}\right)$ along a.e. random walk trajectory X_{n} converge to 0 or 1 .

Sharp harmonic functions

A harmonic function $f: V(G) \rightarrow[0,1]$ is called sharp, if its values $f\left(X_{n}\right)$ along a.e. random walk trajectory X_{n} converge to 0 or 1 .

Sharp functions can be combined by elementary operations:

Sharp harmonic functions

A harmonic function $f: V(G) \rightarrow[0,1]$ is called sharp, if its values $f\left(X_{n}\right)$ along a.e. random walk trajectory X_{n} converge to 0 or 1 .

Sharp functions can be combined by elementary operations:

- 'Union':
$\bigcup_{i} f_{i}(x):=\mathbb{P}\left\{\exists i, f_{i}\left(X_{n}\right) \rightarrow 1\right.$ for random walk X_{n} starting at $\left.x\right\}$
- 'Intersection':
$\bigcap_{i} f_{i}(x):=\mathbb{P}\left\{\forall i, f_{i}\left(X_{n}\right) \rightarrow 1\right.$ for random walk X_{n} starting at $\left.x\right\}$

Sharp harmonic functions

A harmonic function $f: V(G) \rightarrow[0,1]$ is called sharp, if its values $f\left(X_{n}\right)$ along a.e. random walk trajectory X_{n} converge to 0 or 1 .

Sharp functions can be combined by elementary operations:

- 'Union':
$\bigcup_{i} f_{i}(x):=\mathbb{P}\left\{\exists i, f_{i}\left(X_{n}\right) \rightarrow 1\right.$ for random walk X_{n} starting at $\left.x\right\}$
- 'Intersection':
$\bigcap_{i} f_{i}(x):=\mathbb{P}\left\{\forall i, f_{i}\left(X_{n}\right) \rightarrow 1\right.$ for random walk X_{n} starting at $\left.x\right\}$

Thus they satisfy the σ-algebra axioms

Sharp harmonic functions

A harmonic function $f: V(G) \rightarrow[0,1]$ is called sharp, if its values $f\left(X_{n}\right)$ along a.e. random walk trajectory X_{n} converge to 0 or 1 .

Sharp functions can be combined by elementary operations:

- 'Union':
$\bigcup_{i} f_{i}(x):=\mathbb{P}\left\{\exists i, f_{i}\left(X_{n}\right) \rightarrow 1\right.$ for random walk X_{n} starting at $\left.x\right\}$
- 'Intersection':
$\bigcap_{i} f_{i}(x):=\mathbb{P}\left\{\forall i, f_{i}\left(X_{n}\right) \rightarrow 1\right.$ for random walk X_{n} starting at $\left.x\right\}$

Thus they satisfy the σ-algebra axioms, except that there is no ground set.

The criterion

Theorem (G '12)

(Informal statement) Let M be a Markov chain. Any measurable space that can be used as the ground set of the ' σ-algebra' of sharp harmonic functions on M is a realisation of the Poisson boundary of M.

Corollaries

Conjecture (Northshield '93)

Let G be an accumulation-free plane, non-amenable graph with bounded vertex degrees. Then the Northshield circle of G is a realisation of its Poisson boundary.

Corollaries

Conjecture (Northshield '93)

Let G be an accumulation-free plane, non-amenable graph with bounded vertex degrees. Then the Northshield circle of G is a realisation of its Poisson boundary.

Theorem (G '13)

Indeed.

Corollaries

Corollary

Let G be an infinite, Gromov-hyperbolic, non-amenable, 1 -ended, plane graph with bounded degrees and no infinite faces. Then the following five boundaries of G are canonically homeomorphic to each other:

- the hyperbolic boundary
- the Martin boundary [Ancona '88]
- the boundary of the square tiling
- the Northshield circle, and
- the boundary $\partial_{\cong}(G)$.

A conjecture

Conjecture (G)

Let M be a complete, simply connected Riemannian surface with Gaussian curvatures bounded between two negative constants. Let $f: M \rightarrow \mathbb{D}$ be a conformal map. Then for every 1 -way infinite geodesic γ in M, the image $f(\gamma)$ converges to a point in the boundary \mathbb{S}^{1} of \mathbb{D}, and this convergence determines a homeomorphism from the sphere at infinity of M to \mathbb{S}^{1}.

You can do more with the Poisson boundary...

Energy and Douglas' formula

The classical Douglas formula

$$
E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(z, \eta) d \eta
$$

calculates the (Dirichlet) energy of a harmonic function h on \mathbb{D} from its boundary values \hat{h} on the circle $\partial \mathbb{D}$.

Energy in finite electrical networks

$$
E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C^{a b}
$$

Energy in finite electrical networks

$$
\begin{gathered}
E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C^{a b} \\
\text { where } C^{a b}=d(a) \mathbb{P}_{a}(b)
\end{gathered}
$$

Energy in finite electrical networks

$$
\begin{gathered}
E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C^{a b} \\
\text { where } C^{a b}=d(a) \mathbb{P}_{a}(b)
\end{gathered}
$$

Compare with Douglas: $E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(z, \eta) d \eta$

The energy of harmonic functions

Theorem (G \& V. Kaimanovich '14+)

For every locally finite network G, there is a measure C on $\mathcal{P}^{2}(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$
\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} d C(\eta, \zeta) .
$$

The energy of harmonic functions

Theorem (G \& V. Kaimanovich '14+)

For every locally finite network G, there is a measure C on $\mathcal{P}^{2}(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$
\int_{\mathcal{P}^{2}}(\widehat{u}(\eta)-\widehat{u}(\zeta))^{2} d C(\eta, \zeta)
$$

This is a discrete version of a result of [Doob '62] on Green spaces (or Riemannian manifolds), which generalises Douglas' formula $E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(z, \eta) d \eta$

Energy in finite electrical networks

$E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C^{a b}$

Outlook

- Every Cayley graph gives rise to a sequence of finite random graphs.

Outlook

- Every Cayley graph gives rise to a sequence of finite random graphs.
- How do properties of the group relate to typical properties of these finite graphs?

Outlook

- Every Cayley graph gives rise to a sequence of finite random graphs.
- How do properties of the group relate to typical properties of these finite graphs?
- Computer simulations possible (thanks to Chris Midgley).

Outlook

- Every Cayley graph gives rise to a sequence of finite random graphs.
- How do properties of the group relate to typical properties of these finite graphs?
- Computer simulations possible (thanks to Chris Midgley).
- Plans to generalise Sznitman's random interlacements ...

Summary

Agelos Georgakopoulos

