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The Riemann mapping theorem

Theorem (Riemann? ’1851, Carathéodory 1912)
For every simply connected open set Ω & C,Ω , ∅, there is a
bijective conformal map from Ω onto the open unit disk.

Theorem (Koebe 1908)
For every open set Ω & C,Ω , ∅ with finitely many

boundary components, there is a bijective
conformal map from Ω onto a circle domain.
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The circle packing theorem

The Koebe-Andreev-Thurston circle packing theorem

For every finite planar graph G, there is a circle packing in the
plane (or S2) with nerve G.
The packing is unique (up to Möbius transformations) if G is a
triangulation of S2.
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Circle Packing <=> Conformal map

The Koebe-Andreev-Thurston circle packing theorem
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Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion 

to a triangulation of 52, and a combinatorially equivalent circle packing; (a)-(c) are from Oded's 

thesis; thanks to Andrey Mishchenko for creating (d) 
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[S. Rohde: “Oded Schramm: From Circle Packing to SLE”, ’10]
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Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)
... for every finite planar graph G, there is a
square tiling with incidence graph G ...
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Properties of square tilings

every edge is mapped to a square;
vertices correspond to horizontal segments tangent with
their edges;
there is no overlap of squares, and no ‘empty’ space left;
the square tiling of the dual of G can be obtained from that
of G by a 90◦ rotation.
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The construction of square tilings

Think of the graph as an electrical network;

impose an electrical current from p to q;
let the square corresponding to edge e have side length
the flow i(e);
place each vertex x at height equal to the potential h(x);
use a duality argument to determine the width coordinates.
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Think of the graph as an electrical network;
impose an electrical current from p to q;
let the square corresponding to edge e have side length
the flow i(e);
place each vertex x at height equal to the potential h(x);
use a duality argument to determine the width coordinates.
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The construction of square tilings

[J. W. Cannon, W. J. Floyd, and W. R. Parry: “Squaring rectangles:
The finite Riemann mapping theorem."]

“... Riemann, like Klein in the passage quoted from Poincare, may have considered the quadrilateral as a metallic

conducting plate with battery terminals connected to its ‘top’ and ‘bottom’. “The current must pass” as Klein is

supposed to have said. The current flow lines, connecting top to bottom, would have filled the quadrilateral from side

to side one line through each point of the quadrilateral. Equipotential lines, connecting side to side, would likewise

have filled the quadrilateral from top to bottom. The pair of families would meet one another orthogonally and give

rectilinear flat coordinates for the quadrilateral.”

Agelos Georgakopoulos
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The square tilings of Benjamini & Schramm

Theorem (Benjamini & Schramm ’96)
Every (transient) graph G of bounded degree that admits a
uniquely absorbing embedding in the plane admits a square tiling.

Moreover, random walk on G converges a. s. to a point in C.

C
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The boundary of the square tiling coincides with the
Poisson boundary

Question (Benjamini & Schramm ’96)
Does the Poisson boundary of every graph as above
coincide with the boundary of its square tiling?

Theorem (G ’12)

Yes.
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This is not about groups
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The theorem

Theorem (G ’12)
For every bounded degree graph admitting a square
tiling, the Poisson boundary coincides with C.

[Angel, Barlow, Gurel-Gurevich & Nachmias] recently identified
the Poisson & Martin boundary of any bounded degree,
transient, 1-ended triangulation of the plane with the boundary
of its circle packing.

Agelos Georgakopoulos



The theorem

Theorem (G ’12)
For every bounded degree graph admitting a square
tiling, the Poisson boundary coincides with C.

[Angel, Barlow, Gurel-Gurevich & Nachmias] recently identified
the Poisson & Martin boundary of any bounded degree,
transient, 1-ended triangulation of the plane with the boundary
of its circle packing.

Agelos Georgakopoulos



Sharp harmonic functions

A harmonic function f : V (G)→ [0,1] is called sharp,
if its values f (Xn) along a.e. random walk trajectory Xn converge
to 0 or 1.

Sharp functions can be combined by elementary operations:

‘Union’:⋃
i fi (x) := P{∃i , fi (Xn)→ 1 for random walk Xn starting at x}

‘Intersection’:⋂
i fi (x) := P{∀i , fi (Xn)→ 1 for random walk Xn starting at x}

Thus they satisfy the σ-algebra axioms,
except that there is no ground set.
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The criterion

Theorem (G ’12)
(Informal statement) Let M be a Markov chain. Any
measurable space that can be used as the ground set of
the ‘σ-algebra’ of sharp harmonic functions on M is a
realisation of the Poisson boundary of M.
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Corollaries

Conjecture (Northshield ’93)
Let G be an accumulation-free plane, non-amenable graph
with bounded vertex degrees. Then the Northshield circle of G
is a realisation of its Poisson boundary.

Theorem (G ’13)

Indeed.
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Corollaries

Corollary

Let G be an infinite, Gromov-hyperbolic, non-amenable,
1-ended, plane graph with bounded degrees and no infinite
faces. Then the following five boundaries of G are canonically
homeomorphic to each other:

the hyperbolic boundary
the Martin boundary [Ancona ’88]
the boundary of the square tiling
the Northshield circle, and
the boundary ∂�(G).

Agelos Georgakopoulos



A conjecture

Conjecture (G)
Let M be a complete, simply connected Riemannian surface
with Gaussian curvatures bounded between two negative
constants. Let f : M → D be a conformal map. Then for every
1-way infinite geodesic γ in M, the image f (γ) converges to a
point in the boundary S1 of D, and this convergence determines
a homeomorphism from the sphere at infinity of M to S1.

Agelos Georgakopoulos



You can do more with
the Poisson boundary...
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Energy and Douglas’ formula

The classical Douglas formula

E(h) =
∫ 2π

0

∫ 2π

0
(ĥ(η) − ĥ(ζ))2Θ(z, η)dη

calculates the (Dirichlet) energy of a
harmonic function h on D from its
boundary values ĥ on the circle ∂D.
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Energy in finite electrical networks

a

b
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b

Cab

E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab,

where Cab = d(a)Pa(b)

Compare with Douglas: E(h) =
∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(z, η)dη
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The energy of harmonic functions

Theorem (G & V. Kaimanovich ’14+)
For every locally finite network G, there is a measure C on
P2(G) such that for every harmonic function u the energy E(u)
equals ∫

P2

(
û(η) − û(ζ)

)2
dC(η, ζ).

This is a discrete version of a result of [Doob ’62]
on Green spaces (or Riemannian manifolds), which generalises
Douglas’ formula E(h) =

∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(z, η)dη
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Outlook

Every Cayley graph gives rise to a sequence of finite
random graphs.

How do properties of the group relate to typical properties
of these finite graphs?
Computer simulations possible (thanks to Chris Midgley).
Plans to generalise Sznitman’s random interlacements ...
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Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion 

to a triangulation of 52, and a combinatorially equivalent circle packing; (a)-(c) are from Oded's 

thesis; thanks to Andrey Mishchenko for creating (d) 
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