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Hamilton cycles

Hamilton cycle: A cycle containing all vertices.

Some examples:
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Spanning Double-Rays

Classical approach to ‘save’ Hamilton cycle theorems:
accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

Agelos Georgakopoulos Infinite graphs



Introduction Topological cycles Fleischner’s Theorem Extremal Graph Theory The Cycle Space Electrical Networks

Spanning Double-Rays

Classical approach to ‘save’ Hamilton cycle theorems:
accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

Agelos Georgakopoulos Infinite graphs



Introduction Topological cycles Fleischner’s Theorem Extremal Graph Theory The Cycle Space Electrical Networks

Spanning Double-Rays

Classical approach to ‘save’ Hamilton cycle theorems:
accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

Agelos Georgakopoulos Infinite graphs



Introduction Topological cycles Fleischner’s Theorem Extremal Graph Theory The Cycle Space Electrical Networks

Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Yu ’05)
Every locally finite 4-connected planar
graph has a spanning double ray ...

unless
it is 3-divisible.

Agelos Georgakopoulos Infinite graphs



Introduction Topological cycles Fleischner’s Theorem Extremal Graph Theory The Cycle Space Electrical Networks

Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Yu ’05)
Every locally finite 4-connected planar
graph has a spanning double ray ... unless
it is 3-divisible.

Agelos Georgakopoulos Infinite graphs



Introduction Topological cycles Fleischner’s Theorem Extremal Graph Theory The Cycle Space Electrical Networks

Compactifying by Points at Infinity
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can have no spanning double ray
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Ends

end: equivalence class of rays
two rays are equivalent if no finite vertex set separates them

......

two ends

one end

... ... ... ...... ... ... ...

uncountably many ends
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|G|

Every ray converges to its end
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(Equivalent) definition of |G|

Give each edge e a length `(e)

This naturally induces a metric d` on G

Denote by |G|` the completion of (G, d`)

Theorem (G ’06)

If
∑

e∈E(G) `(e) < ∞ then |G|` is homeomorphic to |G|.
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices,
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices

,

(and all ends?)
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices, and thus also all ends.
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

the wild circle of Diestel & Kühn
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Fleischner’s Theorem

Theorem (Fleischner ’74)
The square of a finite 2-connected graph has a
Hamilton cycle

Theorem (Thomassen ’78)
The square of a locally finite 2-connected 1-ended
graph has a Hamilton circle.
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The Theorem

Theorem (G ’06)
The square of any locally finite 2-connected
graph has a Hamilton circle
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Proof?

Hilbert’s space filling curve:

a sequence of injective curves with a non-injective limit
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The Theorem

Theorem (G ’06)
The square of any locally finite 2-connected
graph has a Hamilton circle

Corollary
Cayley graphs are “morally” hamiltonian.
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Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)
Does every finite connected Cayley graph have a Hamilton
cycle?

Problem
Does every connected 1-ended Cayley graph have a Hamilton
circle?
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Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)
Does every finite connected Cayley graph have a Hamilton
cycle?

Problem
Does every connected 1-ended Cayley graph have a Hamilton
circle?

Problem
Prove that every connected Cayley graph of a finitely generated
group Γ has a Hamilton circle unless Γ is the amalgamated
product of more than k groups over a subgroup of order k.
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Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Hamilton cycle theorems
Extremal graph theory
many others ...
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Extremal Graph Theory

Theorem (Mader ’72)
Any finite graph of minimum degree at least
4k has a k-connected subgraph.

k -connected means: you can delete any k − 1 vertices and the graph
will still be connected.

Theorem (M. Stein ’05)

Let k ∈ N and let G be a locally finite graph such that every vertex
has degree at least 6k2 − 5k + 3 and every end has degree at least
6k2 − 9k + 4. Then G has a k-connected subgraph.
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2

Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).
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The topological Cycle Space

Known facts:
A connected graph has an Euler tour iff
every edge-cut is even (Euler)
G is planar iff C(G) has a simple
generating set (MacLane)
If G is 3-connected then its peripheral
cycles generate C(G) (Tutte)

Generalisations:

Bruhn & Stein

Bruhn & Stein

Bruhn
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MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein’05)
... verbatim generalisation for locally finite G
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C(G) and Singular Homology

There is a canonical homomorphism

f : H1(|G|) → C(G)

Theorem (Diestel & Sprüssel ’07)
f is surjective but not injective.
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C(G) and Singular Homology

Problem
Modify H1 to obtain a homology theory that
captures C(G) when applied to |G| and generalises
graph-theoretical theorems to arbitrary continua.

In particular:

Problem
Characterise the continua embeddable in the
plane
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Electrical Networks

An electrical network is a graph G with an assignment of resistances
r : E(G) → R+, and two special vertices (source – sink) pumping a
flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff’s second law (for finite
cycles.

If G is finite then the electrical flow is unique, if it is infinite then
there might be several; but:

Theorem (G ’08)

If
∑

e∈E r(e) < ∞ then there is a unique
non-elusive electrical flow of finite energy.

energy :=
∑

e∈E i2(e)r(e).
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