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Problem 1: A mailman has to deliver a letter to each vertex of
a finite graph. If he performs a random walk, what is his
expected number of steps until all letters are delivered?

Problem 2: A truck-driver has to distribute 1 ton of equally over
all vertices of the graph. If she performs a random walk, what is
the expected total weight she will carry?

Which problem is harder?
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The Cover Time problem is hard

Theorem (Ding Lee & Peres, Ann. Math.’12)

There is a polynomial time
algorithm approximating CT (G)
up to a multiplicative factor.

Theorem (G ’12)

There is an O(n4) algorithm computing cc(G) (exactly).
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Cover Time

The Cover Time of a graph is being studied in several
disciplines:

many applications in computer science
–universal traversal sequences [Lovász et.al.]
–testing graph connectivity [Lovász et.al., Karlin & Raghavan]
–protocol testing [Mihail & Papadimitriou]

physicists have studied the fractal structure of the
uncovered set of a finite grid
mathematicians have studied e.g. cover time of Brownian
motion on Riemannian manifolds [Dembo, Peres, Rosen &
Zeitouni]
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up to a multiplicative factor.

Theorem (G ’12)

There is an O(n4) algorithm computing cc(G) (exactly).

Clearly,

logn <

CT /n < cc < CT

< 4n3/27

A lot of questions arise as to more exact bounds for cc
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Another formulation of cover cost

Problem 2: A truck-driver has to distribute 1 item to each
vertex of the graph. If she performs a random walk, what is the
expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he
performs a random walk, what is the expected total waiting time
of his customers?

It is the same problem!

CC(r ) =
∑

y∈V (G)

Hry
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Hitting times

CC(r ) =
∑

y∈V (G)

Hry ,

... where the hitting time Hry is the expected time for random
walk from r to reach y .

Computing Hry :

Hry =

∑
x
E#

visits to x
before hitting y =

∑
x

pr {x < y } · (E#
re-visits to x
before hitting y )

=
∑

x∈V (G)

pr {x < y }
pxy

...
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Hitting times

Hry =
∑

x∈V (G)

pr {x < y }
pxy

Theorem (Doyle & Snell ’84)
The probability pr {x < y } equals the voltage v (r ) when a

battery imposes voltages v (x) = 1 and v (y ) = 0.

Proof: Both functions pr and v (r ) are harmonic, i.e.

h(r ) =
1

d(r )

∑
w∼r

h(w)

at every vertex r , x , y . Both satisfy the same boundary
conditions at x , y
By uniqueness of harmonic functions, p must coincide with v .
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Tetali’s formula

Hry =
∑

x∈V (G)

pr {x < y }
pxy

Tetali’s formula (’91):

Hxy =
1
2

∑
w∈V (G)

d(w)(r (x , y ) + r (w , y ) − r (w , x))

The commute time formula (Chandra et. al. ’89):

k (x , y ) := Hxy + Hyx = 2mr (x , y )
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Cover Cost and the Wiener Index

Theorem (G & S. Wagner ’12)
For every tree T , and every r ∈ V (T ), we have

CC(r)+D(r) = 2W(T)

...where D(r ) :=
∑

y∈V (T ) d(r , y ) is the centrality of r
and W (T ) := 1

2
∑

x ,y∈V (T ) d(x , y ) is the Wiener Index of T .

Let CCd (r ) :=
∑

y∈V (T ) d(y )Hry/2m. Then

CCd (r ) = 2Wd (T )
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Kemeny’s constant

Theorem (Kemeny & Snell ’76)
For every graph G, the expected hitting time
from r to a random vertex y chosen with
probability proportional to d(y ) does not
depend on r .

Moreover,

CCd (r ) = K (G) =

2m
∑
λ,1

1
1 − λ

=

Kd (G),

where Kd (G) := 1
2
∑

x∈V (G)
∑

y∈V (G) d(x)d(y )r (x , y )
and λ ranges over the eigenvalues of the transition matrix.

[H. Chen and F. Zhang: “Resistance distance and the normalized
Laplacian spectrum”, ’07]
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Is there a ‘reverse’ Kemeny constant?

Problem (Aldous ’89)
Let G be a graph such that the (random) time of the first return
to x by random walk from x has the same distribution for every
x ∈ V.
Does G have to be vertex-transitive?

Aldous’ condition implies that G is regular,
and is equivalent to:
“Txy has the same distribution as Tyx for every x , y ∈ V (G)”.
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Is there a ‘reverse’ Kemeny constant?

Theorem
The following are equivalent for every graph G:

1 Hxy = Hyx for every x , y ∈ V (G);
2 The hitting time from a random enpoint of a random

edge to x is independent of x;
3 The (weighted) resistance-centrality

Rd (x) :=
∑

y∈V (G) d(y )r (x ,y )
2m is independent of x.

Problem
Let G be a graph satisfying one of the above.
Does G have to be regular?
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Vertex orderings - General graphs

Theorem (G & Wagner ’12)

For every graph G, and every vertex x ∈ V (G), we have

CC(x) = mR(x) −
n
2

Rd (x) + K ′d (G),

RC(x) = mR(x) +
n
2

Rd (x) − K ′d (G),

RCd (x) = 2mRd (x) − Kd (G), and
CCd (x) = Kd (G).

Agelos Georgakopoulos



Problem 1: A mailman has to deliver a letter to each vertex of
a finite graph. If he performs a random walk, what is his
expected number of steps until all letters are delivered?

Problem 2: A truck-driver has to distribute 1 ton of equally over
all vertices of the graph. If she performs a random walk, what is
the expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he
performs a random walk, what is the expected total waiting time
of his customers?

Agelos Georgakopoulos



Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)
There is a correspondence between finite planar
graphs and tilings of rectangles by squares.

[Brooks, Smith, Stone & Tutte: “Determinants and current flows in electric
networks.” Discrete Math. ’92]

Agelos Georgakopoulos



Square Tilings

Theorem (Brooks, Smith, Stone & Tutte ’40)
There is a correspondence between finite planar
graphs and tilings of rectangles by squares.

[Brooks, Smith, Stone & Tutte: “Determinants and current flows in electric
networks.” Discrete Math. ’92]

Agelos Georgakopoulos



Properties of square tilings

every edge is mapped to a square;
vertices correspond to horizontal segments tangent with
their edges;
there is no overlap of squares, and no ‘empty’ space left;
the square tiling of the dual of G can be obtained from that
of G by a 90◦ rotation.
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The construction of square tilings

Think of the graph as an electrical network;

impose an electrical current from p to q;
let the square corresponding to edge e have side length
the flow i(e);
place each vertex x at height equal to the potential h(x);
use a duality argument to determine the width coordinates.
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The construction of square tilings

Square tilings can be generalised to all finite planar graphs, and
even beyond

[Benjamini & Schramm: “Random Walks and Harmonic Functions on
Infinite Planar Graphs Using Square Tilings” Ann. Probab., ’96]
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Probabilistic interpretation of the tiling’s geography

Lemma (G ’12)
Let C be a ‘parallel circle’ in the tiling T of G, and let B the

set of points of G at which C ‘dissects’ T . Then the widths of
the points of B in T coincide with the probability distribution
of the first visit to B by brownian motion on G starting at p.
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Probabilistic interpretation of the tiling’s geography

Lemma
For every ‘meridian’ M in T , the

expected net number of crossings of
M by brownian motion on G starting
from p is 0.
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Sketch of proof of the Riemann Mapping Theorem

Think of Ω as a metal plate;

inject an electrical current at p;
draw the corresponding equipotential
curves;
draw ‘meridians’ tangent to the current
flow;

C

-Map equipotential curves into corresponding concentric circles;
-adjust arclengths to be proportional to incoming current flow;
-map meridians into straight lines.
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Harmonic functions on an infinite graph via a
Poisson-like integral

Question (Benjamini & Schramm ’96)
Does the Poisson boundary of every graph as above
coincide with the boundary of its square tiling?

C

Theorem (G ’12)

Yes!
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Summary

CC(r)+D(r) = 2W(T) CCd (r ) = Kd (G)

C
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