Random walks on graphs: a survey

Agelos Georgakopoulos

University of Warwick

26th Cumberland Conference on
Combinatorics, Graph Theory \& Computing
24/5/13

Problem 1: A mailman has to deliver a letter to each vertex of a finite graph. If he performs a random walk, what is his expected number of steps until all letters are delivered?

Problem 1: A mailman has to deliver a letter to each vertex of a finite graph. If he performs a random walk, what is his expected number of steps until all letters are delivered?

Problem 2: A truck-driver has to distribute 1 ton of equally over all vertices of the graph. If she performs a random walk, what is the expected total weight she will carry?

Problem 1: A mailman has to deliver a letter to each vertex of a finite graph. If he performs a random walk, what is his expected number of steps until all letters are delivered?

Problem 2: A truck-driver has to distribute 1 ton of equally over all vertices of the graph. If she performs a random walk, what is the expected total weight she will carry?

Which problem is harder?

The Cover Time problem is hard

Theorem (Ding Lee \& Peres, Ann. Math.'12)
There is a polynomial time algorithm approximating $C T(G)$ up to a multiplicative factor.

The Cover Time problem is hard

Theorem (Ding Lee \& Peres, Ann. Math.'12)
 There is a polynomial time algorithm approximating $C T(G)$ up to a multiplicative factor.

Theorem (G '12)

There is an $O\left(n^{4}\right)$ algorithm computing $c c(G)$ (exactly).

Cover Time

The Cover Time of a graph is being studied in several disciplines:

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]
- physicists have studied the fractal structure of the uncovered set of a finite grid

Cover Time

The Cover Time of a graph is being studied in several disciplines:

- many applications in computer science -universal traversal sequences [Lovász et.al.] -testing graph connectivity [Lovász et.al., Karlin \& Raghavan] -protocol testing [Mihail \& Papadimitriou]
- physicists have studied the fractal structure of the uncovered set of a finite grid
- mathematicians have studied e.g. cover time of Brownian motion on Riemannian manifolds [Dembo, Peres, Rosen \& Zeitouni]

The Cover Time problem is hard

Theorem (Ding Lee \& Peres, Ann. Math.'12)
There is a polynomial time algorithm approximating $C T(G)$ up to a multiplicative factor.

Theorem (G '12)

There is an $O\left(n^{4}\right)$ algorithm computing $c c(G)$ (exactly).

The Cover Time problem is hard

Theorem (Ding Lee \& Peres, Ann. Math.'12)
There is a polynomial time algorithm approximating $C T(G)$ up to a multiplicative factor.

Theorem (G '12)

There is an $O\left(n^{4}\right)$ algorithm computing $c c(G)$ (exactly).

Clearly,

$$
C T / n<c c<C T
$$

The Cover Time problem is hard

Theorem (Ding Lee \& Peres, Ann. Math.'12)
There is a polynomial time algorithm approximating $C T(G)$ up to a multiplicative factor.

Theorem (G '12)

There is an $O\left(n^{4}\right)$ algorithm computing $c c(G)$ (exactly).

Clearly,

$$
\log n<C T / n<c c<C T<4 n^{3} / 27
$$

The Cover Time problem is hard

Theorem (Ding Lee \& Peres, Ann. Math.'12)

There is a polynomial time algorithm approximating $C T(G)$ up to a multiplicative factor.

Theorem (G '12)

There is an $O\left(n^{4}\right)$ algorithm computing $c c(G)$ (exactly).

Clearly,

$$
\log n<C T / n<c c<C T<4 n^{3} / 27
$$

A lot of questions arise as to more exact bounds for $c c$

Another formulation of cover cost

Problem 2: A truck-driver has to distribute 1 item to each vertex of the graph. If she performs a random walk, what is the expected total weight she will carry?

Another formulation of cover cost

Problem 2: A truck-driver has to distribute 1 item to each vertex of the graph. If she performs a random walk, what is the expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he performs a random walk, what is the expected total waiting time of his customers?

Another formulation of cover cost

Problem 2: A truck-driver has to distribute 1 item to each vertex of the graph. If she performs a random walk, what is the expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he performs a random walk, what is the expected total waiting time of his customers?

It is the same problem!

Another formulation of cover cost

Problem 2: A truck-driver has to distribute 1 item to each vertex of the graph. If she performs a random walk, what is the expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he performs a random walk, what is the expected total waiting time of his customers?

It is the same problem!

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

Hitting times

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

... where the hitting time $H_{r y}$ is the expected time for random walk from r to reach y.

Hitting times

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

... where the hitting time $H_{r y}$ is the expected time for random walk from r to reach y.

Computing $H_{r y}$:

$$
H_{r y}=
$$

Hitting times

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

... where the hitting time $H_{r y}$ is the expected time for random walk from r to reach y.

Computing $H_{r y}$:

$$
H_{r y}=\sum_{x} \mathbb{E} \# \text { visits to } x
$$

Hitting times

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

... where the hitting time $H_{r y}$ is the expected time for random walk from r to reach y.

Computing $H_{r y}$:

$$
H_{r y}=\sum_{x} \mathbb{E} \# \begin{gathered}
\text { visits to to } x \\
\text { befor hiting } y
\end{gathered}=\sum_{x} p_{r}\{x<y\} \cdot\left(\mathbb{E} \# \begin{array}{c}
\text { re-visits to } x \\
\text { before hitting } y
\end{array}\right)
$$

Hitting times

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

... where the hitting time $H_{r y}$ is the expected time for random walk from r to reach y.

Computing $H_{r y}$:

$$
\begin{aligned}
& H_{r y}=\sum_{x} \mathbb{E} \# \begin{array}{l}
\text { visists tit } x \\
\text { beifore hiting } y
\end{array}=\sum_{x} p_{r}\{x<y\} \cdot\left(\mathbb{E} \# \begin{array}{c}
\text { re-visits to } x \\
\text { beiofo hiting } y
\end{array}\right) \\
& =\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
\end{aligned}
$$

Hitting times

$$
C C(r)=\sum_{y \in V(G)} H_{r y}
$$

... where the hitting time $H_{r y}$ is the expected time for random walk from r to reach y.

Computing $H_{r y}$:

$$
\begin{gathered}
H_{r y}=\sum_{x} \mathbb{E} \# \text { bisisise tititing } y=\sum_{x} p_{r}\{x<y\} \cdot\left(\mathbb{E} \# \begin{array}{c}
\text { re-visits to } x \\
\text { beioris hititig } y
\end{array}\right) \\
=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}} \ldots
\end{gathered}
$$

Hitting times

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Hitting times

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Theorem (Doyle \& Snell '84)

The probability $p_{r}\{x<y\}$ equals the voltage $v(r)$ when a battery imposes voltages $v(x)=1$ and $v(y)=0$.

Hitting times

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Theorem (Doyle \& Snell '84)

The probability $p_{r}\{x<y\}$ equals the voltage $v(r)$ when a battery imposes voltages $v(x)=1$ and $v(y)=0$.

Proof: Both functions p_{r} and $v(r)$ are harmonic, i.e.

$$
h(r)=\frac{1}{d(r)} \sum_{w \sim r} h(w)
$$

at every vertex $r \neq x, y$.

Hitting times

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Theorem (Doyle \& Snell '84)

The probability $p_{r}\{x<y\}$ equals the voltage $v(r)$ when a battery imposes voltages $v(x)=1$ and $v(y)=0$.

Proof: Both functions p_{r} and $v(r)$ are harmonic, i.e.

$$
h(r)=\frac{1}{d(r)} \sum_{w \sim r} h(w)
$$

at every vertex $r \neq x, y$. Both satisfy the same boundary conditions at x, y

Hitting times

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Theorem (Doyle \& Snell '84)

The probability $p_{r}\{x<y\}$ equals the voltage $v(r)$ when a battery imposes voltages $v(x)=1$ and $v(y)=0$.

Proof: Both functions p_{r} and $v(r)$ are harmonic, i.e.

$$
h(r)=\frac{1}{d(r)} \sum_{w \sim r} h(w)
$$

at every vertex $r \neq x, y$. Both satisfy the same boundary conditions at x, y
By uniqueness of harmonic functions, p must coincide with v.

Tetali's formula

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Tetali's formula

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Tetali's formula ('91):

$$
H_{x y}=\frac{1}{2} \sum_{w \in V(G)} d(w)(r(x, y)+r(w, y)-r(w, x))
$$

Tetali's formula

$$
H_{r y}=\sum_{x \in V(G)} \frac{p_{r}\{x<y\}}{p_{x y}}
$$

Tetali's formula ('91):

$$
H_{x y}=\frac{1}{2} \sum_{w \in V(G)} d(w)(r(x, y)+r(w, y)-r(w, x))
$$

The commute time formula (Chandra et. al. '89):

$$
k(x, y):=H_{x y}+H_{y x}=2 m r(x, y)
$$

Cover Cost and the Wiener Index

Theorem (G \& S. Wagner '12)

For every tree T, and every $r \in V(T)$, we have

$$
C C(r)+D(r)=2 W(T)
$$

...where $D(r):=\sum_{y \in V(T)} d(r, y)$ is the centrality of r and $W(T):=\frac{1}{2} \sum_{x, y \in V(T)} d(x, y)$ is the Wiener Index of T.

Cover Cost and the Wiener Index

Theorem (G \& S. Wagner '12)

For every tree T, and every $r \in V(T)$, we have

$$
C C(r)+D(r)=2 W(T)
$$

...where $D(r):=\sum_{y \in V(T)} d(r, y)$ is the centrality of r and $W(T):=\frac{1}{2} \sum_{x, y \in V(T)} d(x, y)$ is the Wiener Index of T.
in other words:
$\sum_{y \in V(T)}\left(H_{r y}+d(r, y)\right)=2 W(T):=\sum_{x, y \in V(T)} d(x, y)$.

Cover Cost and the Wiener Index

Theorem (G \& S. Wagner '12)

For every tree T, and every $r \in V(T)$, we have

$$
C C(r)+D(r)=2 W(T)
$$

...where $D(r):=\sum_{y \in V(T)} d(r, y)$ is the centrality of r and $W(T):=\frac{1}{2} \sum_{x, y \in V(T)} d(x, y)$ is the Wiener Index of T.

Let $C C_{d}(r):=\sum_{y \in V(T)} d(y) H_{r y} / 2 m$.

Cover Cost and the Wiener Index

Theorem (G \& S. Wagner '12)

For every tree T, and every $r \in V(T)$, we have

$$
C C(r)+D(r)=2 W(T)
$$

...where $D(r):=\sum_{y \in V(T)} d(r, y)$ is the centrality of r and $W(T):=\frac{1}{2} \sum_{x, y \in V(T)} d(x, y)$ is the Wiener Index of T.

Let $C C_{d}(r):=\sum_{y \in V(T)} d(y) H_{r y} / 2 m$. Then

$$
C C_{d}(r)=2 W_{d}(T)
$$

Kemeny's constant

Theorem (Kemeny \& Snell '76)

For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Kemeny's constant

Theorem (Kemeny \& Snell '76)
 For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

... in other words, $C C_{d}(r)=: K(G)$ is constant.

Kemeny's constant

Theorem (Kemeny \& Snell '76)

For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Moreover,

$$
C C_{d}(r)=K(G)=\quad K_{d}(G),
$$

where $K_{d}(G):=\frac{1}{2} \sum_{x \in V(G)} \sum_{y \in V(G)} d(x) d(y) r(x, y)$

Kemeny's constant

Theorem (Kemeny \& Snell '76)

For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Moreover,

$$
C C_{d}(r)=K(G)=2 m \sum_{\lambda \neq 1} \frac{1}{1-\lambda}=K_{d}(G)
$$

where $K_{d}(G):=\frac{1}{2} \sum_{x \in V(G)} \sum_{y \in V(G)} d(x) d(y) r(x, y)$ and λ ranges over the eigenvalues of the transition matrix.

Kemeny's constant

Theorem (Kemeny \& Snell '76)

For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Moreover,

$$
C C_{d}(r)=K(G)=2 m \sum_{\lambda \neq 1} \frac{1}{1-\lambda}=K_{d}(G)
$$

where $K_{d}(G):=\frac{1}{2} \sum_{x \in V(G)} \sum_{y \in V(G)} d(x) d(y) r(x, y)$ and λ ranges over the eigenvalues of the transition matrix.
[L. Lovász: "Random Walks on Graphs: A Survey", '93.]

Kemeny's constant

Theorem (Kemeny \& Snell '76)

For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Moreover,

$$
C C_{d}(r)=K(G)=2 m \sum_{\lambda \neq 1} \frac{1}{1-\lambda}=K_{d}(G)
$$

where $K_{d}(G):=\frac{1}{2} \sum_{x \in V(G)} \sum_{y \in V(G)} d(x) d(y) r(x, y)$ and λ ranges over the eigenvalues of the transition matrix.
[H. Chen and F. Zhang: "Resistance distance and the normalized Laplacian spectrum", '07]

Kemeny's constant

Theorem (Kemeny \& Snell '76)
For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Kemeny's constant

> Theorem (Kemeny \& Snell '76)
> For every graph G, the expected hitting time from r to a random vertex y chosen with probability proportional to $d(y)$ does not depend on r.

Question: Is there a 'reverse' Kemeny constant?

Is there a 'reverse' Kemeny constant?

Problem (Aldous '89)

Let G be a graph such that the (random) time of the first return to x by random walk from x has the same distribution for every $x \in V$.
Does G have to be vertex-transitive?

Is there a 'reverse' Kemeny constant?

Problem (Aldous '89)

Let G be a graph such that the (random) time of the first return to x by random walk from x has the same distribution for every $x \in V$.
Does G have to be vertex-transitive?

Theorem (G '12)

No; it suffices if G is walk-regular.

Is there a 'reverse' Kemeny constant?

Problem (Aldous '89)

Let G be a graph such that the (random) time of the first return to x by random walk from x has the same distribution for every $x \in V$.
Does G have to be vertex-transitive?

Theorem (G'12)

No; it suffices if G is walk-regular.

Aldous' condition implies that G is regular,

Is there a 'reverse' Kemeny constant?

Problem (Aldous '89)

Let G be a graph such that the (random) time of the first return to x by random walk from x has the same distribution for every $x \in V$.
Does G have to be vertex-transitive?

Theorem (G '12)

No; it suffices if G is walk-regular.

Aldous' condition implies that G is regular, and is equivalent to:
" $T_{x y}$ has the same distribution as $T_{y x}$ for every $x, y \in V(G)$ ".

Is there a 'reverse' Kemeny constant?

Problem (Aldous '89)

Let G be a graph such that the (random) time of the first return to x by random walk from x has the same distribution for every $x \in V$.
Does G have to be vertex-transitive?

Problem

Let G be a graph such that $H_{x y}=H_{y x}$ for every $x, y \in V(G)$. Does G have to be regular?

Aldous' condition implies that G is regular, and is equivalent to:
" $T_{x y}$ has the same distribution as $T_{y x}$ for every $x, y \in V(G)$ ".

Is there a 'reverse' Kemeny constant?

Theorem

The following are equivalent for every graph G :
(1) $H_{x y}=H_{y x}$ for every $x, y \in V(G)$;
(2) The hitting time from a random enpoint of a random edge to x is independent of x;
(3) The (weighted) resistance-centrality
$R_{d}(x):=\frac{\sum_{y \in V(G)} d(y) r(x, y)}{2 m}$ is independent of x.

Problem

Let G be a graph satisfying one of the above. Does G have to be regular?

Vertex orderings - General graphs

Theorem (G \& Wagner '12)

For every graph G, and every vertex $x \in V(G)$, we have

$$
\begin{aligned}
C C(x) & =m R(x)-\frac{n}{2} R_{d}(x)+K_{d}^{\prime}(G), \\
R C(x) & =m R(x)+\frac{n}{2} R_{d}(x)-K_{d}^{\prime}(G), \\
R C_{d}(x) & =2 m R_{d}(x)-K_{d}(G), \text { and } \\
C C_{d}(x) & =K_{d}(G) .
\end{aligned}
$$

Problem 1: A mailman has to deliver a letter to each vertex of a finite graph. If he performs a random walk, what is his expected number of steps until all letters are delivered?

Problem 2: A truck-driver has to distribute 1 ton of equally over all vertices of the graph. If she performs a random walk, what is the expected total weight she will carry?

Problem 3: A repairman has to visit all vertices of graph. If he performs a random walk, what is the expected total waiting time of his customers?

Square Tilings

Theorem (Brooks, Smith, Stone \& Tutte '40)
There is a correspondence between finite planar graphs and tilings of rectangles by squares.

Square Tilings

Theorem (Brooks, Smith, Stone \& Tutte '40)

There is a correspondence between finite planar graphs and tilings of rectangles by squares.

[Brooks, Smith, Stone \& Tutte: "Determinants and current flows in electric networks." Discrete Math. '92]

Properties of square tilings

Properties of square tilings

- every edge is mapped to a square;

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no 'empty' space left;

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no 'empty' space left;
- the square tiling of the dual of G can be obtained from that of G by a 90° rotation.

Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no 'empty' space left;
- the square tiling of the dual of G can be obtained from that of G by a 90° rotation.

The construction of square tilings

- Think of the graph as an electrical network;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;
- place each vertex x at height equal to the potential $h(x)$;

The construction of square tilings

- Think of the graph as an electrical network;
- impose an electrical current from p to q;
- let the square corresponding to edge e have side length the flow $i(e)$;
- place each vertex x at height equal to the potential $h(x)$;
- use a duality argument to determine the width coordinates.

The construction of square tilings

Square tilings can be generalised to all finite planar graphs, and even beyond

[Benjamini \& Schramm: "Random Walks and Harmonic Functions on Infinite Planar Graphs Using Square Tilings" Ann. Probab., '96]

Probabilistic interpretation of the tiling's geography

Lemma (G '12)

Let C be a 'parallel circle' in the tiling T of G, and let B the set of points of G at which C 'dissects' T. Then the widths of the points of B in T coincide with the probability distribution of the first visit to B by brownian motion on G starting at p.

Probabilistic interpretation of the tiling's geography

Lemma (G '12)

Let C be a 'parallel circle' in the tiling T of G, and let B the set of points of G at which C 'dissects' T. Then the widths of the points of B in T coincide with the probability distribution of the first visit to B by brownian motion on G starting at p.

Probabilistic interpretation of the tiling's geography

Lemma
 For every 'meridian' M in T, the expected net number of crossings of M by brownian motion on G starting from p is 0 .

Probabilistic interpretation of the tiling's geography

Lemma
 For every 'meridian' M in T, the expected net number of crossings of M by brownian motion on G starting from p is 0 .

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;
- draw 'meridians' tangent to the current flow;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;
- draw 'meridians' tangent to the current flow;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;
- draw 'meridians' tangent to the current flow;

-Map equipotential curves into corresponding concentric circles;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;
- draw 'meridians' tangent to the current flow;

-Map equipotential curves into corresponding concentric circles; -adjust arclengths to be proportional to incoming current flow;

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;
- draw 'meridians' tangent to the current flow;

-Map equipotential curves into corresponding concentric circles; -adjust arclengths to be proportional to incoming current flow; -map meridians into straight lines.

Sketch of proof of the Riemann Mapping Theorem

- Think of Ω as a metal plate;
- inject an electrical current at p;
- draw the corresponding equipotential curves;
- draw 'meridians' tangent to the current flow;

-Map equipotential curves into corresponding concentric circles; -adjust arclengths to be proportional to incoming current flow; -map meridians into straight lines.

Harmonic functions on an infinite graph via a Poisson-like integral

Question (Benjamini \& Schramm '96)

Does the Poisson boundary of every graph as above coincide with the boundary of its square tiling?

Harmonic functions on an infinite graph via a Poisson-like integral

Question (Benjamini \& Schramm '96)

Does the Poisson boundary of every graph as above coincide with the boundary of its square tiling?

Theorem (G '12)
Yes!

Summary

$C C(r)+D(r)=2 W(T)$
$C C_{d}(r)=K_{d}(G)$

Agelos Georgakopoulos

