
From finite graphs to infinite; and beyond

Agelos Georgakopoulos

Technische Universität Graz
and

Mathematisches Seminar
Universität Hamburg

Bremen, 9.11.2009

Agelos Georgakopoulos Infinite graphs



Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Hamilton cycle theorems
Extremal graph theory
Cycle space theorems
many others ...
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Hamilton cycles

Hamilton cycle: A cycle containing all vertices.

Some examples:
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Spanning Double-Rays

Classical approach to ‘save’ Hamilton cycle theorems:
accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

4-connected := you can remove any 3 vertices and the graph remains
connected
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Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

......

This approach only extends finite theorems in very restricted cases:

Theorem (Yu ’05)
Every locally finite 4-connected planar
graph has a spanning double ray ...

unless
it is 3-divisible.
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Compactifying by Points at Infinity

A 3-divisible graph

can have no spanning double ray

......

... but a Hamilton cycle?
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Ends

end: equivalence class of rays
two rays are equivalent if no finite vertex set separates them

......

two ends

one end

... ... ... ...... ... ... ...

uncountably many ends
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The End Compactification

|G|

Every ray converges to its end
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(Equivalent) definition of |G|

Give each edge e a length `(e)

This naturally induces a metric d` on G

Denote by |G|` the completion of (G, d`)

Theorem (G ’06)

If
∑

e∈E(G) `(e) < ∞ then |G|` is homeomorphic to |G|.
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices,
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices

,

(and all ends?)
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices, and thus also all ends.
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Hamilton circle:
a circle containing all vertices, and thus also all ends.
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Infinite Cycles

Circle:
A homeomorphic image of S1 in |G|.

the wild circle of Diestel & Kühn
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Circle:
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Fleischner’s Theorem

Theorem (Fleischner ’74)
The square of a finite 2-connected graph has a
Hamilton cycle

Theorem (Thomassen ’78)
The square of a locally finite 2-connected 1-ended
graph has a Hamilton circle.
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The Theorem

Theorem (G ’06)
The square of any locally finite 2-connected
graph has a Hamilton circle
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Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Agelos Georgakopoulos Infinite graphs



Proof?

Hilbert’s space filling curve:

a sequence of injective curves with a non-injective limit
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The Theorem

Theorem (G ’06)
The square of any locally finite 2-connected
graph has a Hamilton circle

Corollary
Cayley graphs are “morally” hamiltonian.

Agelos Georgakopoulos Infinite graphs



The Theorem

Theorem (G ’06)
The square of any locally finite 2-connected
graph has a Hamilton circle

Corollary
Cayley graphs are “morally” hamiltonian.

Agelos Georgakopoulos Infinite graphs



Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)
Does every finite connected Cayley graph have a Hamilton
cycle?

Problem
Does every connected 1-ended Cayley graph have a Hamilton
circle?
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Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)
Does every finite connected Cayley graph have a Hamilton
cycle?

Problem
Does every connected 1-ended Cayley graph have a Hamilton
circle?

Problem
Characterise the locally finite Cayley graphs that admit
Hamilton circles.
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Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Hamilton cycle theorems
Extremal graph theory
Cycle space theorems
many others ...
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2

Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).
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The topological Cycle Space

Known facts:
A connected graph has an Euler tour iff
every edge-cut is even (Euler)
G is planar iff C(G) has a simple
generating set (MacLane)
The relator-cycles of a Cayley graph G
generate C(G).

Generalisations:

Bruhn & Stein

Bruhn & Stein

Bruhn & G
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MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein’05)
... verbatim generalisation for locally finite G
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2

Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).

Problem
Can we use concepts from homology to generalise
theorems from graphs to other topological spaces?
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2
Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).

Theorem (Diestel & Sprüssel’ 09)

C(G) coincides with the first Čech homology group
of |G| but not with its first singular homology group.

Problem
Can we use concepts from homology to generalise
theorems from graphs to other topological spaces?
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Cycle Space

The cycle space C(G) of a finite graph:
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Some linear algebra

Let R be a ring and E any set

Consider the module RE

If T ⊆ RE is thin, then we can define
∑
T

thin: for every coordinate e ∈ E there are only finitely many
elements N ∈ T with N(e) 6= 0.

Problem

Does every generating set N ⊆ RE contain a basis?

Theorem (Bruhn & G ’06)
Yes if E is countable, no otherwise
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Electrical Networks

An electrical network is a graph G with an assignment of resistances
r : E(G) → R+, and two special vertices (source – sink) pumping a
flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff’s second law (for finite
cycles.

If G is finite then the electrical flow is unique, if it is infinite then
there might be several; but:

Theorem (G ’08)

If
∑

e∈E r(e) < ∞ then there is a unique
non-elusive electrical flow of finite energy.

energy :=
∑

e∈E i2(e)r(e).
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Finding wild circles by a limit construction

Assume, there are two ‘good’ flows f , g and consider

z := f − g
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