From finite graphs to infinite; and beyond

Agelos Georgakopoulos

Technische Universität Graz and Mathematisches Seminar Universität Hamburg

Bremen, 9.11.2009

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Hamilton cycles

Hamilton cycle: A cycle containing all vertices.

Some examples:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

⇒ need more general notions

Classical approach to 'save' Hamilton cycle theorems: accept double-rays as infinite cycles

Classical approach to 'save' Hamilton cycle theorems: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Classical approach to 'save' Hamilton cycle theorems: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

4-connected := you can remove any 3 vertices and the graph remains connected

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ...

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ... unless it is 3-divisible.

A 3-divisible graph

A 3-divisible graph

A 3-divisible graph can have no spanning double ray

A 3-divisible graph can have no spanning double ray

A 3-divisible graph can have no spanning double ray

A 3-divisible graph can have no spanning double ray

... but a Hamilton cycle?

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

end: equivalence class of raystwo rays are equivalent if no finite vertex set separates them

Every ray converges to its end

Every ray converges to its end

Give each edge e a length $\ell(e)$

Give each edge e a length $\ell(e)$

This naturally induces a metric d_{ℓ} on G

Give each edge e a length $\ell(e)$

This naturally induces a metric d_{ℓ} on G

Denote by $|G|_{\ell}$ the completion of (G, d_{ℓ})

Give each edge e a length $\ell(e)$

This naturally induces a metric d_{ℓ} on G

Denote by $|G|_{\ell}$ the completion of (G, d_{ℓ})

Theorem (G '06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_{\ell}$ is homeomorphic to |G|.

Circle:

A homeomorphic image of S^1 in |G|.

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices

Circle

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices (and all ends?)

Circle

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices, and thus also all ends.

Circle

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices, and thus also all ends.

Circle:

A homeomorphic image of S^1 in |G|.

Circle:

A homeomorphic image of S^1 in |G|.

the wild circle of Diestel & Kühn

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected <u>1-ended</u> graph has a Hamilton circle.

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

Hilbert's space filling curve:

a sequence of injective curves with a non-injective limit

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

Corollary

Cayley graphs are "morally" hamiltonian.

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem

Characterise the locally finite Cayley graphs that admit Hamilton circles.

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

The cycle space C(G) of a finite graph:

- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles

The cycle space C(G) of a finite graph:

- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles

i.e., the first simplicial homology group of *G*.

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

The cycle space C(G) of a finite graph:

- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

Allows edge sets of infinite circles;

The cycle space C(G) of a finite graph:

- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

The topological Cycle Space

Known facts:

- A connected graph has an Euler tour iff every edge-cut is even (Euler)
- G is planar iff C(G) has a simple generating set (MacLane)
- The relator-cycles of a Cayley graph G generate C(G).

Generalisations:

Bruhn & Stein

Bruhn & Stein

Bruhn & G

MacLane's Planarity Criterion

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

simple: no edge appears in more than two generators.

MacLane's Planarity Criterion

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein'05)

... verbatim generalisation for locally finite G

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Cycle Space

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Theorem (Diestel & Sprüssel' 09)

 $\mathcal{C}(G)$ coincides with the first Čech homology group of |G| but not with its first singular homology group.

Cycle Space

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles

i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Problem 1

Can we use concepts from homology to generalise theorems from graphs to other topological spaces?

Let *R* be a ring and *E* any set

Let R be a ring and E any set Consider the module R^E

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Does every generating set $\mathcal{N} \subseteq R^{\mathsf{E}}$ contain a basis?

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Does every generating set $\mathcal{N} \subseteq R^E$ contain a basis?

Theorem (Bruhn & G'06)

Yes if E is countable, no otherwise

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem
$$\mathit{ls}\,\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle\,?$$

Let R be a ring and E any set Consider the module R^E If $\mathcal{T} \subseteq R^E$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Is
$$\langle \mathcal{N} \rangle = \langle \langle \mathcal{N} \rangle \rangle$$
?

Theorem (Bruhn & G'06)

Yes if N is thin and R is a field or a finite ring, no otherwise

An electrical network is a graph G with an assignment of resistances $r: E(G) \to \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

An electrical network is a graph G with an assignment of resistances $r: E(G) \to \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff's second law (for finite cycles.

An electrical network is a graph G with an assignment of resistances $r: E(G) \to \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff's second law (for finite cycles.

If *G* is finite then the electrical flow is *unique*, if it is infinite then there might be several; but:

An electrical network is a graph G with an assignment of resistances $r: E(G) \to \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff's second law (for finite cycles.

If *G* is finite then the electrical flow is *unique*, if it is infinite then there might be several; but:

Theorem (G '08)

If $\sum_{e \in E} r(e) < \infty$ then there is a unique non-elusive electrical flow of finite energy.

energy :=
$$\sum_{e \in E} i^2(e) r(e)$$
.

$$z := f - g$$

$$z := f - g$$

$$z := f - g$$

