From finite graphs to infinite; and beyond

Agelos Georgakopoulos

Technische Universität Graz
and
Mathematisches Seminar
Universität Hamburg

Bremen, 9.11.2009

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Hamilton cycles

Hamilton cycle: A cycle containing all vertices.
Some examples:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...
\Rightarrow need more general notions

Spanning Double-Rays

Classical approach to 'save’ Hamilton cycle theorems: accept double-rays as infinite cycles

Spanning Double-Rays

Classical approach to 'save' Hamilton cycle theorems: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Spanning Double-Rays

Classical approach to 'save' Hamilton cycle theorems: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

4-connected := you can remove any 3 vertices and the graph remains connected

Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Yu '05)

Every locally finite 4-connected planar graph has a spanning double ray ...

Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

> Theorem (Yu '05)
> Every locally finite 4-connected planar graph has a spanning double ray ... unless it is 3-divisible.

Compactifying by Points at Infinity

A 3-divisible graph

Compactifying by Points at Infinity

A 3-divisible graph

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

... but a Hamilton cycle?

Ends

end: equivalence class of rays two rays are equivalent if no finite vertex set separates them

Ends

end: equivalence class of rays two rays are equivalent if no finite vertex set separates them

Ends

end: equivalence class of rays

 two rays are equivalent if no finite vertex set separates them

Ends

end: equivalence class of rays

 two rays are equivalent if no finite vertex set separates them

one end

uncountably many ends

The End Compactification

The End Compactification

The End Compactification

Every ray converges to its end

The End Compactification

G

Every ray converges to its end

(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e)$

(Equivalent) definition of |G|

Give each edge e a length $\ell(e)$
This naturally induces a metric d_{ℓ} on G

(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e)$
This naturally induces a metric d_{ℓ} on G
Denote by $|G|_{\ell}$ the completion of $\left(G, d_{\ell}\right)$

(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e)$
This naturally induces a metric d_{ℓ} on G
Denote by $|G|_{\ell}$ the completion of $\left(G, d_{\ell}\right)$

Theorem (G '06)

If $\sum_{e \in E(G)} \ell(e)<\infty$ then $|G|_{\ell}$ is homeomorphic to $|G|$.

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices (and all ends?)

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices, and thus also all ends.

Infinite Cycles

Circle:
A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices, and thus also all ends.

Infinite Cycles

Circle:
A homeomorphic image of S^{1} in $|G|$.

Infinite Cycles

Circle:
A homeomorphic image of S^{1} in $|G|$.

the wild circle of Diestel \& Kühn

Fleischner's Theorem

Theorem (Fleischner '74)
 The square of a finite 2-connected graph has a Hamilton cycle

Fleischner's Theorem

Theorem (Fleischner '74)
 The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)
 The square of a locally finite 2-connected 1-ended graph has a Hamilton circle.

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

Proof?

Proof?

Hilbert's space filling curve:

a sequence of injective curves with a non-injective limit

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle

Corollary

Cayley graphs are "morally" hamiltonian.

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)
Does every finite connected Cayley graph have a Hamilton cycle?

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem

Characterise the locally finite Cayley graphs that admit Hamilton circles.

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

The topological Cycle Space

Known facts:

- A connected graph has an Euler tour iff every edge-cut is even (Euler)
- G is planar iff $\mathcal{C}(G)$ has a simple generating set (MacLane)
- The relator-cycles of a Cayley graph G generate $\mathcal{C}(G)$.

Generalisations:
Bruhn \& Stein
Bruhn \& Stein
Bruhn \& G

MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn \& Stein'05)
 ... verbatim generalisation for locally finite G

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Theorem (Diestel \& Sprüssel' 09)

$\mathcal{C}(G)$ coincides with the first Čech homology group
of $|G|$ but not with its first singular homology group.

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Problem

Can we use concepts from homology to generalise theorems from graphs to other topological spaces?

Some linear algebra

Let R be a ring and E any set

Some linear algebra

Let R be a ring and E any set Consider the module R^{E}

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$
thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Some linear algebra

Let R be a ring and E any set Consider the module R^{E} If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$ thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Does every generating set $\mathcal{N} \subseteq R^{E}$ contain a basis?

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$
thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Problem

Does every generating set $\mathcal{N} \subseteq R^{E}$ contain a basis?

Theorem (Bruhn \& G '06)

Yes if E is countable, no otherwise

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$
thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$
thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

$$
\begin{aligned}
& \text { Problem } \\
& \text { Is }\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle ?
\end{aligned}
$$

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$
thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

$$
\begin{aligned}
& \text { Problem } \\
& \text { Is }\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle ?
\end{aligned}
$$

Theorem (Bruhn \& G '06)

Yes if \mathcal{N} is thin and R is a field or a finite ring, no otherwise

Electrical Networks

An electrical network is a graph G with an assignment of resistances $r: E(G) \rightarrow \mathbb{R}^{+}$, and two special vertices (source - sink) pumping a flow of constant value / into the network.

Electrical Networks

An electrical network is a graph G with an assignment of resistances $r: E(G) \rightarrow \mathbb{R}^{+}$, and two special vertices (source - sink) pumping a flow of constant value $/$ into the network.
electrical flow: A flow satisfying Kirchhoff's second law (for finite cycles.

Electrical Networks

An electrical network is a graph G with an assignment of resistances $r: E(G) \rightarrow \mathbb{R}^{+}$, and two special vertices (source - sink) pumping a flow of constant value I into the network.
electrical flow: A flow satisfying Kirchhoff's second law (for finite cycles.

If G is finite then the electrical flow is unique, if it is infinite then there might be several; but:

Electrical Networks

An electrical network is a graph G with an assignment of resistances $r: E(G) \rightarrow \mathbb{R}^{+}$, and two special vertices (source - sink) pumping a flow of constant value I into the network.
electrical flow: A flow satisfying Kirchhoff's second law (for finite cycles.

If G is finite then the electrical flow is unique, if it is infinite then there might be several; but:

Theorem (G '08)

If $\sum_{e \in E} r(e)<\infty$ then there is a unique non-elusive electrical flow of finite energy.
energy $:=\sum_{e \in E} i^{2}(e) r(e)$.

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

