A new homology for infinite graphs and metric continua

Agelos Georgakopoulos

Technische Universität Graz and
Mathematisches Seminar
Universität Hamburg

Bremen, 10.11.09

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Let's play

Let's play

Let's play

$->$

Let's play

->

Let's play

->

Let's play

->

- Can you make a theorem out of this observation?

Let's play

->

- Can you make a theorem out of this observation?
- Is it useful?

The cycle space of a finite graph

The cycle space $\mathcal{C}(G)$ of a finite graph G :

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

The cycle space of a finite graph

The cycle space $\mathcal{C}(G)$ of a finite graph G :

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

The wild circle

Circle: A homeomorphic image of S^{1} in $|G|$.

the wild circle of Diestel \& Kühn

Cycle decompositions for infinite graphs

Theorem (Diestel \& Kühn)
Every element of the topological cycle space $\mathcal{C}(G)$ of a locally finite graph G can be written as a union of a set of edge-disjoint circles.

MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn \& Stein'05)
 ... verbatim generalisation for locally finite G

What about more continuous spaces?

What about more continuous spaces?

What about more continuous spaces?

What about more continuous spaces?

What about more continuous spaces?

What about more continuous spaces?

$H_{1}(X)$: The first (singular) homology group $=$ the abelianization of $\pi_{1}(X)$

What about more continuous spaces?

Proposition
 Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

$H_{1}(X)$: The first (singular) homology group $=$ the abelianization of $\pi_{1}(X)$

What about more continuous spaces?

Proposition

> Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

?
$H_{1}(X)$: The first (singular) homology group $=$ the abelianization of $\pi_{1}(X)$

What about more continuous spaces?

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.
?
$H_{1}(X)$: The first (singular) homology group $=$ the abelianization of $\pi_{1}(X)$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0 .

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

$d(a, b):=\inf ($ area you need to make $a \approx b$)

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

$d(a, b):=\inf ($ area you need to make $a \approx b$)
more precisely: $d(a, b):=\inf _{x^{\text {isom }} x^{\prime}, X^{\prime}} \operatorname{area}\left(X^{\prime} \backslash X\right)$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

$d(a, b):=\inf ($ area you need to make $a \approx b$)
more precisely: $d(a, b):=\inf _{x^{\text {som }}{ }_{x^{\prime}}}$ area $\left(X^{\prime} \backslash X\right)$ $a \approx b$ in X^{\prime}

Let $H_{1}^{\prime}(X):=H_{1}(X) / d=0$

A new homology for metric spaces

Idea: put a natural distance function on $H_{1}(X) \ldots$
... and identify elements at distance 0.

$d(a, b):=\inf ($ area you need to make $a \approx b$)
more precisely: $d(a, b):=\inf _{x^{\text {som }}{ }_{X^{\prime}}} \operatorname{area}\left(X^{\prime} \backslash X\right)$ $a \approx b$ in X^{\prime}

Let $H_{1}^{\prime}(X):=H_{1}(X) / d=0$ and let $\hat{H}_{1}(X)$ be its completeion.

An example

Agelos Georgakopoulos

An example

$$
d(a, b):=\inf _{\substack{x \\ a \approx b \text { in } X^{\prime}}}^{\substack{\text { isom }}} \underset{x^{\prime}}{ } \operatorname{area}\left(X^{\prime} \backslash X\right)
$$

The Theorem

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

$?$

The Theorem

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

?

Theorem (G' 09)

For every compact metric space X and $C \in \hat{H}_{1}(X)$, there is a representative $\left(z_{i}\right)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_{i} \ell\left(z_{i}\right)$ among all representatives of C.

The Conjecture

Theorem (MacLane '37)
A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

?

Conjecture

Let X be a compact, 1-dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U:=\left\{[\chi] \in \hat{H}_{1}(X) \mid \chi \in S\right\}$ spans $\hat{H}_{1}(X)$.

An intermediate result

Let $(\Gamma,+)$ be an abelian metrizable topological group, and suppose a function $\ell: \Gamma \rightarrow \mathbb{R}^{+}$is given satisfying the following properties

- $\ell(a)=0$ iff $a=0$;
- $\ell(a+b) \leq \ell(a)+\ell(b)$ for every $a, b \in \Gamma$;
- if $b=\lim a_{i}$ then $\ell(b) \leq \liminf \ell\left(a_{i}\right)$;
- Some "isoperimetric inequality" holds: e.g. $d(a, 0) \leq U \ell^{2}(a)$ for some fixed U and for every $a \in \Gamma$.
Then every element of Γ is a (possibly infinite) sum of primitive elements.

Outlook

- Generalise to higher dimensions

Outlook

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals

Outlook

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Use to study groups

Outlook

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Use to study groups
- Can you modify \hat{H}_{1} to obtain a homology that is invariant under homotopy-equivalence?

