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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2

Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).
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Can you make a theorem out of this observation?
Is it useful?
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The cycle space of a finite graph

The cycle space C(G) of a finite graph G:

A vector space over Z2

Consists of all sums of cycles

Proposition

Every element of C(G) can be written as a
union of a set of edge-disjoint cycles.
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The wild circle

Circle: A homeomorphic image of S1 in |G|.

the wild circle of Diestel & Kühn
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Cycle decompositions for infinite graphs

Theorem (Diestel & Kühn)

Every element of the topological cycle space C(G) of a locally
finite graph G can be written as a union of a set of edge-disjoint
circles.
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MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff C(G) has a
simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein’05)
... verbatim generalisation for locally finite G
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What about more continuous spaces?

Proposition
Every element of C(G) can

be written as a union of a
set of edge-disjoint cycles.

?
H1(X ): The first (singular) homology group = the abelianization
of π1(X )

Theorem (MacLane ’37)
A finite graph G is planar iff
C(G) has a simple
generating set.

?
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A new homology for metric spaces

Idea: put a natural distance function on H1(X ) ...

... and identify elements at distance 0.

a

b

more precisely: d(a, b) := inf (area you need to make a ≈ b)
more precisely: d(a, b) := inf

X
isom
↪→ X ′

a≈b in X ′
area(X ′\X )

Let H ′
1(X ):= H1(X )/d=0 and let Ĥ1(X ) be its completeion.
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An example

d(a, b) := inf
X

isom
↪→ X ′

a≈b in X ′
area(X ′\X )
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The Theorem

Proposition
Every element of C(G) can

be written as a union of a
set of edge-disjoint cycles.

?

Theorem (G’ 09)

For every compact metric space X and C ∈ Ĥ1(X ), there is a
representative (zi)i∈N of C that minimizes the length

∑
i `(zi)

among all representatives of C.
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The Conjecture

Theorem (MacLane ’37)
A finite graph G is planar iff
C(G) has a simple
generating set.

?

Conjecture
Let X be a compact, 1–dimensional, locally connected, metrizable
space that has no cut point. Then X is planar iff there is a simple
set S of loops in X and a metric d inducing the topology of X so
that the set U := {[χ] ∈ Ĥ1(X ) | χ ∈ S} spans Ĥ1(X ).
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An intermediate result

Let (Γ,+) be an abelian metrizable topological group, and
suppose a function ` : Γ → R+ is given satisfying the following
properties

`(a) = 0 iff a = 0;
`(a + b) ≤ `(a) + `(b) for every a, b ∈ Γ;
if b = lim ai then `(b) ≤ lim inf `(ai);
Some “isoperimetric inequality” holds: e.g.
d(a, 0) ≤ U`2(a) for some fixed U and for every a ∈ Γ.

Then every element of Γ is a (possibly infinite) sum of primitive
elements.
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Outlook

Generalise to higher dimensions

Generalise other graph-theoretical theorems to
continua/fractals
Use to study groups
Can you modify Ĥ1 to obtain a homology that is invariant
under homotopy–equivalence?
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