A new homology for infinite graphs and metric continua

Agelos Georgakopoulos

Technische Universität Graz and Mathematisches Seminar Universität Hamburg

Bremen, 10.11.09

イロト イポト イヨト イヨト 一座

Agelos Georgakopoulos

The cycle space C(G) of a finite graph:

- A vector space over Z₂
- Consists of all sums of cycles
- i.e., the first simplicial homology group of G.

The topological cycle space C(G) of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Agelos Georgakopoulos

・ロト・西ト・ヨト・ヨー つくぐ

Agelos Georgakopoulos

Agelos Georgakopoulos

Agelos Georgakopoulos

->

• Can you make a theorem out of this observation?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• Can you make a theorem out of this observation?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• Is it useful?

The cycle space of a finite graph

The cycle space C(G) of a finite graph *G*:

- A vector space over Z₂
- Consists of all sums of cycles

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

イロン イボン イヨン イヨン

The cycle space of a finite graph

The cycle space C(G) of a finite graph *G*:

- A vector space over Z₂
- Consists of all sums of cycles

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

Agelos Georgakopoulos

Circle: A homeomorphic image of S^1 in |G|.

the wild circle of Diestel & Kühn

イロト イヨト イヨト イ

ъ

Agelos Georgakopoulos

Cycle decompositions for infinite graphs

Theorem (Diestel & Kühn)

Every element of the topological cycle space C(G) of a locally finite graph G can be written as a union of a set of edge-disjoint circles.

イロト イポト イヨト イヨト 三連

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

イロト イポト イヨト イヨト 三連

simple: no edge appears in more than two generators.

Agelos Georgakopoulos

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein'05)

... verbatim generalisation for locally finite G

イロト イ団ト イヨト イヨト

Agelos Georgakopoulos

Agelos Georgakopoulos

イロト イ団ト イヨト イヨト

-20

Agelos Georgakopoulos

▲口→ ▲圖→ ▲注→ ▲注→ 三注

Agelos Georgakopoulos

Agelos Georgakopoulos

Agelos Georgakopoulos

 $H_1(X)$: The first (singular) homology group = the abelianization of $\pi_1(X)$

イロト イポト イヨト イヨト 一座

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

イロン イボン イヨン

 $H_1(X)$: The first (singular) homology group = the abelianization of $\pi_1(X)$

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

 $H_1(X)$: The first (singular) homology group = the abelianization of $\pi_1(X)$

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

 $H_1(X)$: The first (singular) homology group = the abelianization of $\pi_1(X)$

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

Idea: put a natural distance function on $H_1(X)$...

Agelos Georgakopoulos

メロト (得) (注) (さ) (う)

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

・ロン・西方・ ・ ヨン・ ヨン・

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

イロン イボン イヨン

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

イロト イヨト イヨト イ

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

 $d(a, b) := inf (area you need to make <math>a \approx b)$

イロン イボン イヨン

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

イロン イボン イヨン イヨン

Idea: put a natural distance function on $H_1(X)$... and identify elements at distance 0.

ヘロト ヘアト ヘビト ヘビト

Let $H'_1(X) := H_1(X)/_{d=0}$

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

Let $H'_1(X) := H_1(X)/_{d=0}$ and let $\hat{H}_1(X)$ be its completeion.

► < E > < E > ...

An example

Agelos Georgakopoulos

An example

$$\frac{d(a,b) := \inf_{\substack{\chi' \hookrightarrow \chi' \\ a \approx b \text{ in } X'}} \operatorname{area}(X' \setminus X)$$

Agelos Georgakopoulos

The Theorem

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

?

イロン イボン イヨン イヨン

Agelos Georgakopoulos

The Theorem

Proposition

Every element of C(G) can be written as a union of a set of edge-disjoint cycles.

?

イロン イボン イヨン

Theorem (G' 09)

For every compact metric space X and $C \in \hat{H}_1(X)$, there is a representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

The Conjecture

Theorem (MacLane '37)

A finite graph G is planar iff C(G) has a simple generating set.

?

イロト イポト イヨト イヨ

Conjecture

Let X be a compact, 1–dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U := \{ [\chi] \in \hat{H}_1(X) \mid \chi \in S \}$ spans $\hat{H}_1(X)$. Let $(\Gamma, +)$ be an abelian metrizable topological group, and suppose a function $\ell: \Gamma \to \mathbb{R}^+$ is given satisfying the following properties

- $\ell(a) = 0$ iff a = 0;
- $\ell(a+b) \leq \ell(a) + \ell(b)$ for every $a, b \in \Gamma$;
- if $b = \lim a_i$ then $\ell(b) \le \liminf \ell(a_i)$;
- Some "isoperimetric inequality" holds: e.g.
 d(a, 0) ≤ Uℓ²(a) for some fixed U and for every a ∈ Γ.

Then every element of Γ is a (possibly infinite) sum of primitive elements.

イロン イロン イヨン イヨン 三臣

• Generalise to higher dimensions

Agelos Georgakopoulos

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals

イロト イポト イヨト イヨト

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Use to study groups

イロン イボン イヨン イヨン

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Use to study groups
- Can you modify H
 ₁ to obtain a homology that is invariant under homotopy–equivalence?

イロト イポト イヨト イヨト 三日