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Let I be a group, and S a generating set of I'. Define the
corresponding Cayley graph G = Cay(I', S) by:
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Let I be a group, and S a generating set of I'. Define the
corresponding Cayley graph G = Cay(I', S) by:

o V(G)=T,
@ foreverygelands e {ab,c,...}, putinan edge:
g%
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Sabidussi’'s Theorem

Theorem (Sabidussi’s Theorem)

A properly edge-coloured digraph is a Cayley
graph iff for every x,y € V(G) there is a
colour-preserving automorphism mapping x to y.

properly edge-coloured := no vertex has two incoming or two
outgoing edges with the same colour

Let I be a group, and S a generating set of I'. Define the
corresponding Cayley graph G = Cay(I', S) by:

o V(G)=T,
e foreverygelands e {a,b,c,...}, putin an edge:
NS
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Charactisation of the finite planar groups

Theorem (Maschke 1886)
Every finite planar group is a group of isometries of S2.
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The Cayley complex

Letl' =(a,b,c,...| Ry, Rz...) be a group presentation. Define
the corresponding Cayley complex CC (a, b,c,...| R{,Rz...)
by:
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The Cayley complex

Letl' =(a,b,c,...| Ry, Rz...) be a group presentation. Define
the corresponding Cayley complex CC (a, b,c,...| R{,Rz...)

by:
e V(G)=T,
o foreverygerandsc {a,b,c,...}, putinanedge: o >~ ‘e
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The Cayley complex

Letl' =(a,b,c,...| Ry, Rz...) be a group presentation. Define
the corresponding Cayley complex CC (a, b,c,...| R{,Rz...)
by:
e V(G)=T,
o foreverygerandsc {a,b,c,...}, putinanedge: o >~ ‘e
@ for every closed walk C induced by a relator R;, glue in a
disc along C.
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The Cayley complex

Letl' =(a,b,c,...| Ry, Rz...) be a group presentation. Define
the corresponding Cayley complex CC (a, b,c,...| R{,Rz...)
by:
e V(G)=T,
o foreverygerandsc {a,b,c,...}, putinanedge: o >~ ‘e
@ for every closed walk C induced by a relator R;, glue in a
disc along C.

Given a planar Cayley graph, can you find a presentation in
which the relators induce precisely the face boundaries?
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The Cayley complex

Letl' =(a,b,c,...| Ry, Rz...) be a group presentation. Define
the corresponding Cayley complex CC (a, b,c,...| R{,Rz...)
by:
° V(G)=T,
o foreverygerandsc {a,b,c,...}, putinanedge: o >~ ‘e
@ for every closed walk C induced by a relator R;, glue in a
disc along C.

Given a planar Cayley graph, can you find a presentation in
which the relators induce precisely the face boundaries?

Yes! :

Theorem (Whitney '32)

Let G be a 3-connected plane graph. Then
every automorphism of G extends to a
homeomorphism of the sphere.
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

@ Generators: the edge-colours of G;
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

@ Generators: the edge-colours of G;
@ Relators: the facial words starting at a fixed vertex.
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

@ Generators: the edge-colours of G;
@ Relators: the facial words starting at a fixed vertex.
This is indeed a presentation of I'(G)
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

@ Generators: the edge-colours of G;
@ Relators: the facial words starting at a fixed vertex.
This is indeed a presentation of I'(G)

Let X be the corresponding Cayley complex.
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

@ Generators: the edge-colours of G;
@ Relators: the facial words starting at a fixed vertex.
This is indeed a presentation of I'(G)

Let X be the corresponding Cayley complex.

Then X is homeomorphic to S2.
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Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following
group presentation:

@ Generators: the edge-colours of G;
@ Relators: the facial words starting at a fixed vertex.
This is indeed a presentation of I'(G)

Let X be the corresponding Cayley complex.

Then X is homeomorphic to S?. Thus:

Theorem (Maschke 1886)
Every finite planar group is a group of isometries of S2.
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The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds
to a group of isometries of R? or H?.
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The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds
to a group of isometries of R? or H?.
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Planar groups and fundamental groups of surfaces

Planar groups < — > fundamental groups of surfaces
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Planar groups and fundamental groups of surfaces

Planar groups < — > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
Cayley complex
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Planar groups and fundamental groups of surfaces

Planar groups < — > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
Cayley complex

What about the other ones?
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Planar groups and fundamental groups of surfaces

Planar groups < — > fundamental groups of surfaces

... general classical theory, but only for groups with a planar
Cayley complex

What about the other ones?

Theorem (G ’10)

A group has a planar Cayley complex if and only if
it has a VAP-free Cayley graph.
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What about the non VAP-free ones?

Open Problems:
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What about the non VAP-free ones?

Open Problems:

Problem (Mohar)

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?
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What about the non VAP-free ones?

Open Problems:

Problem (Mohar)

Problem (Droms et. al.)

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?

Is there an effective
enumeration of the
planar locally finite
Cayley graphs?
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What about the non VAP-free ones?

Open Problems:
Conjecture (Bonnington

Problem (Mohar)

Problem (Droms et. al.) | & Watkins)

Is there an effective Every planar
enumeration of the 3-connected locally
planar locally finite finite transitive graph
Cayley graphs? has at least one face
bounded by a cycle.

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?
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What about the non VAP-free ones?

Open Problems:
Conjecture (Bonnington

Problem (Mohar)

Problem (Droms et. al.) | & Watkins)

Is there an effective Every planar
enumeration of the 3-connected locally
planar locally finite finite transitive graph
Cayley graphs? has at least one face
bounded by a cycle.

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
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Classification of the cubic planar Cayley graphs

Theorem (G ’10)

Let G be a planar cubic Cayley graph. Then G is
colour-isomorphic to precisely one element of the
list.
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Classification of the cubic planar Cayley graphs

Theorem (G ’10)
Let G be a planar cubic Cayley graph. Then G is
colour-isomorphic to precisely one element of the
list.

Conversely, for every element of the list and any
choice of parameters, the corresponding Cayley
graph is planar.
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What about the non VAP-free ones?

Open Problems:
Conjecture (Bonnington

Problem (Mohar)

Problem (Droms et. al.) | & Watkins)

Is there an effective Every planar
enumeration of the 3-connected locally
planar locally finite finite transitive graph
Cayley graphs? has at least one face
bounded by a cycle.

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
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Corollary (G ’10)

Every planar cubic Cayley graph has
an almost planar Cayley complex.

Agelos Georgakopoulos Planar Cayley graphs



Cayley graphs without finite face boundaries

Conjecture (Bonnington

& Watkins)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.
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Cayley graphs without finite face boundaries

Conjecture (Bonnington

& Watkins)

Every planar
3-connected locally
finite transitive graph
has at least one face
bounded by a cycle.

FALSE!
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Cayley graphs without finite face boundaries
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Cayley graphs without finite face boundaries
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Cayley graphs without finite face boundaries
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Spot the societies!
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Stallings’ Theorem

Theorem (Stallings '71)

Every group with >1 ends can be written as an
HNN-extension or an amalgamation product
over a finite subgroup.
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Theorem (Stallings '71)

Every group with >1 ends can be written as an
HNN-extension or an amalgamation product
over a finite subgroup.
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Group splittings by topological minors
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Group splittings by topological minors

Let G = Cay(l', S) be a Cayley graph with
> 1 ends. Then there is a non-trivial
splitting of G as a union of subdivisions of
Cayley graphs.
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Group splittings by topological minors

Let G = Cay(l', S) be a Cayley graph with
> 1 ends. Then there is a non-trivial
splitting of G as a union of subdivisions of
Cayley graphs.

Ay Bl

\\\’\& iy jj

/
“\ \ / /
\ / ==
\ / e
3 / x =
\ / \ ===

Agelos Georgakopoulos Planar Cayley graphs



Group splittings by topological minors

Let G = Cay(l', S) be a Cayley graph with
> 1 ends. Then there is a non-trivial
splitting of G as a union of subdivisions of
Cayley graphs.
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Group splittings by topological minors

Let G = Cay(l', S) be a Cayley graph with
> 1 ends. Then there is a non-trivial
splitting of G as a union of subdivisions of
Cayley graphs.

Corollary (G ’10)
True for planar cubic Cayley graphs.
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