The planar cubic Cayley graphs

Agelos Georgakopoulos

Technische Universität Graz

Berlin, 1.11.10

Agelos Georgakopoulos Planar Cayley graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha\beta)^2 \rangle$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Agelos Georgakopoulos Planar Cayley graphs

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha \beta)^2 \rangle$$

<週 > < 注 > < 注 > . 注

Let Γ be a group, and *S* a generating set of Γ . Define the corresponding Cayley graph $G = Cay(\Gamma, S)$ by:

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha \beta)^2 \rangle$$

<週 > < 注 > < 注 > . 注

Let Γ be a group, and *S* a generating set of Γ . Define the corresponding Cayley graph $G = Cay(\Gamma, S)$ by:

•
$$V(G) = \Gamma$$
,

$$\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha \beta)^2 \rangle$$

(* (E)) * (E))

Let Γ be a group, and *S* a generating set of Γ . Define the corresponding Cayley graph $G = Cay(\Gamma, S)$ by:

•
$$V(G) = \Gamma$$
,

• for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge:

Theorem (Sabidussi's Theorem)

A properly edge-coloured digraph is a Cayley graph iff for every $x, y \in V(G)$ there is a colour-preserving automorphism mapping x to y.

properly edge-coloured := no vertex has two incoming or two outgoing edges with the same colour

Let Γ be a group, and *S* a generating set of Γ . Define the corresponding Cayley graph $G = Cay(\Gamma, S)$ by:

•
$$V(G) = \Gamma$$
,

• for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge:

イロト イポト イヨト イヨト 三連

Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2 .

ヘロト ヘアト ヘビト ヘビト

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex *CC* $\langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

イロト イポト イヨト イヨト 三油

Let $\Gamma = \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ be a group presentation. Define the corresponding Cayley complex $CC \langle a, b, c, \dots | R_1, R_2 \dots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\overset{g}{\bullet} \xrightarrow{s} \overset{gs}{\bullet}$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Yes! :

```
Theorem (Whitney '32)
Let G be a 3-connected plane graph. Then
every automorphism of G extends to a
homeomorphism of the sphere.
```

Proving Maschke's Theorem

Given a finite plane Cayley graph *G*, consider the following group presentation:

Proving Maschke's Theorem

Given a finite plane Cayley graph *G*, consider the following group presentation:

• Generators: the edge-colours of G;

- Generators: the edge-colours of G;
- *Relators:* the facial words starting at a fixed vertex.

イロン 不得 とくほ とくほ とう

- Generators: the edge-colours of G;
- *Relators:* the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

- Generators: the edge-colours of G;
- *Relators:* the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let *X* be the corresponding Cayley complex.

- Generators: the edge-colours of G;
- *Relators:* the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let *X* be the corresponding Cayley complex.

Then X is homeomorphic to S^2 .

- Generators: the edge-colours of G;
- *Relators:* the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let *X* be the corresponding Cayley complex.

Then X is homeomorphic to S^2 . Thus:

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2 .

・ロン・(部)とくほどくほどう ほ

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2 .

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2 .

Planar groups < - > fundamental groups of surfaces

(本間) (本語) (本語) (二語)

Planar groups < -> fundamental groups of surfaces

... general classical theory, but only for groups with a planar Cayley complex

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ | 臣 | のへで

Planar groups < -> fundamental groups of surfaces

... general classical theory, but only for groups with a planar Cayley complex

What about the other ones?

▲ 伊 ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

Planar groups < -> fundamental groups of surfaces

... general classical theory, but only for groups with a planar Cayley complex

What about the other ones?

Theorem (G '10)

A group has a planar Cayley complex if and only if it has a VAP-free Cayley graph.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Open Problems:

Agelos Georgakopoulos Planar Cayley graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

ヘロト ヘアト ヘビト ヘビト

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

ヘロト ヘアト ヘビト ヘビト

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs? Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

くロト (過) (目) (日)

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

ヘロト ヘ戸ト ヘヨト ヘヨト

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?

Classification of the cubic planar Cayley graphs

Theorem (G '10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of **the list**.

Classification of the cubic planar Cayley graphs

Theorem (G '10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of **the list**.

Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.

イロト イポト イヨト イヨト 三油

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

ヘロト ヘ戸ト ヘヨト ヘヨト

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?

Agelos Georgakopoulos Planar Cayley graphs

・ロト・日本・日本・日本・日本・日本

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Agelos Georgakopoulos Planar Cayley graphs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary (G'10)

Every planar cubic Cayley graph has an almost planar Cayley complex.

<ロ> (四) (四) (三) (三) (三)

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

FALSE!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Spot the societies!

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Spot the societies!

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

イロト イポト イヨト イヨト 三油

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Agelos Georgakopoulos

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

<ロト (四) (日) (日) (日) (日) (日) (日)

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

<ロト (四) (日) (日) (日) (日) (日) (日)

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Conjecture

Let $G = Cay(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

<ロト (四) (日) (日) (日) (日) (日) (日)

Corollary (G'10)

True for planar cubic Cayley graphs.