

Technische Universität Graz
and
Mathematisches Seminar
Universität Hamburg
Avŋ́va，23－6－2010

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Hamilton cycles

Hamilton cycle: A cycle containing all vertices.
Some examples:

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...
\Rightarrow need more general notions

Spanning Double-Rays

Classical approach to 'save' Hamilton cycle theorems: accept double-rays ($\delta \iota \tau \lambda$ és αx тiveऽ) as infinite cycles

Spanning Double-Rays

Classical approach to 'save' Hamilton cycle theorems: accept double-rays ($\delta \iota \tau \lambda \varepsilon \varepsilon_{\varsigma} \alpha x$ тiveऽ) as infinite cycles

This approach only extends finite theorems in very restricted cases:

Spanning Double-Rays

Classical approach to 'save' Hamilton cycle theorems: accept double-rays ($\delta \iota \tau \lambda \varepsilon \varepsilon_{\varsigma} \alpha x$ тiveऽ) as infinite cycles

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte '56)
 Every finite 4-connected planar graph has a Hamilton cycle

4-connected := you can remove any 3 vertices and the graph remains connected

Spanning Double－Rays

Classical approach：accept double－rays as infinite cycles

This approach only extends finite theorems in very restricted cases：

Theorem（Yu＇05）

Every locally finite 4－connected planar graph has a spanning double ray ．．．

Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:

> Theorem (Yu '05)
> Every locally finite 4-connected planar graph has a spanning double ray ... unless it is 3-divisible (тріхотоцíбцо).

Compactifying by Points at Infinity

A 3-divisible graph

Compactifying by Points at Infinity

A 3-divisible graph

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

Compactifying by Points at Infinity

A 3-divisible graph
can have no spanning double ray

Compactifying by Points at Infinity

A 3-divisible graph can have no spanning double ray

... but a Hamilton cycle?

Ends

$\pi \varepsilon \dot{p} \alpha \varsigma$ (end): equivalence class of rays
two rays are equivalent if no finite vertex set separates them

Ends

$\pi \varepsilon ́ p \alpha s$ (end): equivalence class of rays two rays are equivalent if no finite vertex set separates them

Ends

$\pi \dot{\varepsilon} p \alpha \varsigma$ (end): equivalence class of rays two rays are equivalent if no finite vertex set separates them

Ends

$\pi \dot{\varepsilon} p \alpha \varsigma$ (end): equivalence class of rays two rays are equivalent if no finite vertex set separates them

one end

uncountably many ends

The End Compactification

The End Compactification

The End Compactification

Every ray converges to its end

The End Compactification

= end compactification $=$ Freudenthal compactification

Every ray converges to its end

(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e) \in \mathbb{R}^{+}$

(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e) \in \mathbb{R}^{+}$

This naturally induces a metric d_{ℓ} on G

(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e) \in \mathbb{R}^{+}$
This naturally induces a metric d_{ℓ} on G
Denote by $|G|_{\ell}$ the completion of $\left(G, d_{\ell}\right)$

（Equivalent）definition of $|G|$

Give each edge e a length $\ell(e) \in \mathbb{R}^{+}$
This naturally induces a metric d_{ℓ} on G
Denote by $|G|_{\ell}$ the completion of $\left(G, d_{\ell}\right)$

Theorem（G＇06）

If $\sum_{e \in E(G)} \ell(e)<\infty$ then $|G|_{\ell}$ is homeomorphic to $|G|$ ．

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices (and all ends?)

Infinite Cycles

Circle:
 A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices, and thus also all ends.

Infinite Cycles

Circle:
A homeomorphic image of S^{1} in $|G|$.

Hamilton circle:
a circle containing all vertices, and thus also all ends.

Infinite Cycles

Circle:
A homeomorphic image of S^{1} in $|G|$.

Infinite Cycles

Circle:
A homeomorphic image of S^{1} in $|G|$.

the wild circle of Diestel \& Kühn

Fleischner's Theorem

Theorem (Fleischner '74)
 The square of a finite 2-connected graph has a Hamilton cycle

Fleischner＇s Theorem

Theorem（Fleischner＇74）

The square of a finite 2－connected graph has a Hamilton cycle

Theorem（Thomassen＇78）

The square of a locally finite 2－connected 1－ended graph has a Hamilton circle（i．e a spanning double－ray）．

Theorem (G '06, Adv. Math. '09)
The square of any locally finite 2-connected graph has a Hamilton circle

Proof?

Proof?

Proof?

Proof？

Proof?

Proof?

Hilbert's space filling curve:

a sequence of injective curves with a non-injective limit

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle.

The Theorem

Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle.

Corollary (informal)

Most Cayley graphs are hamiltonian.

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)
Does every finite connected Cayley graph have a Hamilton cycle?

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1 -ended Cayley graph have a Hamilton circle?

Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser '59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Hamiltonicity in Cayley graphs

Problem（Rapaport－Strasser＇59）

Does every finite connected Cayley graph have a Hamilton cycle？

Problem

Does every connected 1－ended Cayley graph have a Hamilton circle？

Problem

Characterise the locally finite Cayley graphs that admit Hamilton circles．

Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- Cycle space theorems
- many others ...

Cycle Space

The cycle space (χ их入ó $\chi \omega \rho о \varsigma) \mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2} (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.

Cycle Space

The cycle space (χ их入ó $\chi \omega \rho о \varsigma) \mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2} (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.
i.e., the first simplicial homology group of G.

Cycle Space

The cycle space ($\chi \cup \chi \lambda$ ó $\chi \omega \rho \circ \varsigma) \mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2} (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

Cycle Space

The cycle space ($\chi \cup \chi \lambda$ ó $\chi \omega \rho \circ \varsigma) \mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2} (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;

Cycle Space

The cycle space ($\chi \cup \chi \lambda$ о́ $\chi \omega \rho о \varsigma) \mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2} (one coordinate per edge of G);
- Consists of all sums of edge-sets of cycles of G.
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

The topological Cycle Space

Known facts:
Generalisations:

- A connected graph has an Euler tour iff every edge-cut is even (Euler)
- G is planar iff $\mathcal{C}(G)$ has a simple generating set (MacLane)
- The geodetic cycles of G generate $\mathcal{C}(G)$.

Bruhn \& Stein

Bruhn \& Stein

G \& Sprüssel

MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

MacLane's Planarity Criterion

Theorem (MacLane '37)
 A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn \& Stein'05)
 ... verbatim generalisation for locally finite G

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Theorem (Diestel \& Sprüssel' 09)

$\mathcal{C}(G)$ coincides with the first Čech homology group
of $|G|$ but not with its first singular homology group.

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Problem

Can we use concepts from homology to generalise theorems from graphs to other topological spaces?

Cycle Space

The cycle space $\mathcal{C}(G)$ of a finite graph:

- A vector space over \mathbb{Z}_{2}
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).

Theorem (G '09)

...the cycle decomposition theorem for graphs generalises to arbitrary continua if one considers the 'right' homology...

Some linear algebra

Let R be a ring and E any set

Some linear algebra

Let R be a ring and E any set Consider the module R^{E}

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin (also called slender), then $\sum \mathcal{T}$ is well-defined. thin (apoıó): for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin（also called slender），then $\sum \mathcal{T}$ is well－defined． thin（apoıó）：for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$ ．

Problem

Does every generating set $\mathcal{N} \subseteq R^{E}$ contain a basis of $\langle\mathcal{N}\rangle$ ？

$$
\langle\mathcal{N}\rangle:=\left\{\sum \mathcal{T} \mid \mathcal{T} \subseteq \mathcal{N}, \mathcal{T} \text { is thin }\right\}
$$

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin（also called slender），then $\sum \mathcal{T}$ is well－defined． thin（apoıó）：for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$ ．

Problem

Does every generating set $\mathcal{N} \subseteq R^{E}$ contain a basis of $\langle\mathcal{N}\rangle$ ？

$$
\langle\mathcal{N}\rangle:=\left\{\sum \mathcal{T} \mid \mathcal{T} \subseteq \mathcal{N}, \mathcal{T} \text { is thin }\right\}
$$

Theorem（Bruhn \＆G＇06）

Yes if R is a field and E is countable， no otherwise．

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin, then we can define $\sum \mathcal{T}$
thin: for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$.

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin，then we can define $\sum \mathcal{T}$ thin：for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$ ．

> Problem
> Let $\mathcal{N} \subseteq R^{E}$. Is $\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle ?$

Some linear algebra

Let R be a ring and E any set
Consider the module R^{E}
If $\mathcal{T} \subseteq R^{E}$ is thin，then we can define $\sum \mathcal{T}$
thin：for every coordinate $e \in E$ there are only finitely many elements $N \in \mathcal{T}$ with $N(e) \neq 0$ ．

Problem

$$
\text { Let } \mathcal{N} \subseteq R^{E} . \text { Is }\langle\mathcal{N}\rangle=\langle\langle\mathcal{N}\rangle\rangle \text { ? }
$$

Theorem（Bruhn \＆G＇06）

Yes if \mathcal{N} is thin and R is a field or a finite ring， no otherwise．

Infinite electrical networks

Infinite electrical networks

Electrical networks have many applications in mathematics:

Infinite electrical networks

Electrical networks have many applications in mathematics:

- in the study of Random Walks

Infinite electrical networks

Electrical networks have many applications in mathematics：
－in the study of Random Walks
－in the study of Riemannian manifolds

Infinite electrical networks

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds
- in Combinatorics

The discrete Network Problem

The setup:

The discrete Network Problem

A graph $G=(V, E)$

The setup:

The discrete Network Problem

The setup:
A graph $G=(V, E)$
a function $r: E \rightarrow \mathbb{R}_{+}$(the resistances)

The discrete Network Problem

The setup:
A graph $G=(V, E)$
a function $r: E \rightarrow \mathbb{R}_{+}$(the resistances)
a source and a sink $p, q \in V$

The discrete Network Problem

The setup:
A graph $G=(V, E)$
a function $r: E \rightarrow \mathbb{R}_{+}$(the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

The discrete Network Problem

The setup:
A graph $G=(V, E)$
a function $r: E \rightarrow \mathbb{R}_{+}$(the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:

The problem:
(Discrete Dirichlet
Problem)

The discrete Network Problem

The setup:
A graph $G=(V, E)$
a function $r: E \rightarrow \mathbb{R}_{+}$(the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:

The problem: (Discrete Dirichlet Problem)

$$
\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e})=0
$$

The discrete Network Problem

The setup:
A graph $G=(V, E)$
a function $r: E \rightarrow \mathbb{R}_{+}$(the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:

The problem:
(Discrete Dirichlet
Problem)

Uniqueness of solutions

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:

The problem:

$$
\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e})=0
$$

where $v(\vec{e}):=f(\vec{e}) r(e)$ (Ohm's law)

Uniqueness of solutions

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:

The problem:

$$
\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e})=0
$$

where $v(\vec{e}):=f(\vec{e}) r(e)$ (Ohm's law)

Finite Networks
Infinite Networks

Uniqueness of solutions

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:
The problem:

$$
\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e})=0
$$

where $v(\vec{e}):=f(\vec{e}) r(e)$ (Ohm's law)

Finite Networks
Infinite Networks
Unique solution

Uniqueness of solutions

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:
The problem:

$$
\begin{gathered}
\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e})=0 \\
\text { where } v(\vec{e}):=f(\vec{e}) r(e) \text { (Ohm's law) }
\end{gathered}
$$

Finite Networks
Infinite Networks

Unique solution

Uniqueness of solutions

Find a $p-q$ flow f in G with intensity I that satisfies Kirchhoff's second law:
The problem:

$$
\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e})=0
$$

$$
\text { where } v(\vec{e}):=f(\vec{e}) r(e) \text { (Ohm's law) }
$$

Finite Networks
Unique solution

Networks of finite total resistance
?

Infinite Networks
Not necessarily unique solution

Good flows

Good flow:
The net flow along any such cut must be zero:

The Theorem

The Theorem

Finite Networks
Networks of finite total resistance

Unique solution

Infinite Networks

Not necessarily unique solution

The Theorem

Theorem (G '08)

In a network with $\sum_{e \in E} r(e)<\infty$ there is a unique good flow with finite energy that satisfies Kirchhoff's second law.

Energy of $f: \frac{1}{2} \sum_{e \in E} f^{2}(e) r(e)$

Finite Networks

Unique solution

Networks of finite total resistance
?

Infinite Networks

Not necessarily unique solution

Proof of uniqueness

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Proof of uniqueness

Assume there are two 'good' flows f, g and consider $z:=f-g$

Finite case:

Infinite case:

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

Finding wild circles by a limit construction

Assume, there are two 'good' flows f, g and consider

$$
z:=f-g
$$

