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Abstract

This paper is divided in two mostly independent parts that both explore a di�er-
ent aspect of random walk and random graphs. We �rst study the Benjamini-Schramm
convergence and we prove the recurrence of certain graphs that are Benjamini-Schramm
limits. The second part is the study of a speci�c random graph. Most of the results
showed in this part are new and due to myself.
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Introduction

A graph G is de�ned by a set of vertices V and a set of edges E ⊆ V × V . We say that
two vertices u, v are neighbours i� (u, v) ∈ E. The degree of a vertex is the number of
neighbours it has. The graph we consider are of �nite degree. We work on non oriented
simple graphs, meaning that no vertex is linked to itself and that E is symmetric. We
sometimes confuse G with its own set of vertices. In the �rst section, we also assume that
graphs are simply connected, meaning removing one edge will not make it disconnected.

One of the main topics in this paper are simple random walks on graphs. A simple
random walk on a graph is a Markov process (Xn)n∈N whose states are the vertices of
the graph and whose probability of transition is de�ned as follows: for all u, v in V ,
P(Xn = u|Xn−1 = v) = 1

deg(v) if there is an edge between u and v, 0 otherwise.
In the �rst section of this work, we prove a recurrence result on certain random graphs.

The proof is taken from [BS01]. The second section is mostly the extent of the works of
Agelos Georgakopoulos and John Haslegrave in [GH16].

1 Benjamini-Schramm convergence

1.1 De�nitions and examples

This approch of the Benjamini-Schramm convergence is largely inspred by [ATV].
We work in the space RGD of the rooted connected simple graphs with degree bounded

byD ∈ N. A root is simply a distinguished vertex. We can put a distance on that space: let
(G1, o1) and (G2, o2) in RGD, and d the largest integer such that BG1(o1, d) is isomorphic
to BG2(o2, d), then d((G1, o1), (G2, o2)) = 1

d . By BG(o, d) we mean the subgraph of G
whose vertices are vertices of G at a combinatoric distance to o smaller than d.

A random rooted graph is therefore a Borel probability distribution on RGD. A se-
quence of random graphs converges iif the sequence of distributions converges weakly.

De�nition. A sequence (µn)n∈N of probability distributions converges to µ iif for all con-
tinuous function f : RGD → R,

∫
RGD f(x)dµn(x) tends to

∫
RGD f(x)dµ(x)

Since the neighbourhoods of the root constitute a clopen base of RGD, we can say that
the weak convergence is equivalent to the convergence of the measures of the base sets. By
neighbourhoods of the root we mean the sets {G ∈ RGD|BG(o, d) = H} for any d ∈ N and
H ∈ RGD. The precedent de�nition is therefore equivalent to :

De�nition. A sequence ((Gn, on))n∈N of random rooted graph converges in the sense of
Benjamini-Schramm to (G, o) iif for all k ∈ N∗ and α ∈ GD �nite, P(Gn∩B(on, k) ∼= α)
converges to P(G ∩B(o, k) ∼= α) .

Example. The n-cycle, where the root is chosen uniformly, converges to a graph a.s. equal
to (Z, 0).

The n× n grid, where the root is chosen uniformly, converges to a graph a.s. equal to
(Z2, (0, 0)).

The binary tree of height n where the root is chosen uniformly among the leaves con-
verges to a graph a.s. equal to the canopy tree (the root being any of the leaves).

The binary tree of height n where the root is chosen uniformly among the vertices
converges to a graph a.s. equal to the canopy tree (the root being of height h with probability
2−h (see section 2 for more details)).
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The 3-regular graph of size n where the root is chosen uniformly among the vertices,
does not converge to the 3-regular graph but to the canopy tree.

(a) Convergence 1 (b) Convergence 2

(c) Convergence 3 (d) Convergence 4

Figure 1: Examples

1.2 Recurrence

In this section, we present the proof by Benjamini and Schramm that certain limits of
graphs are recurrent.

We say that a graph is recurrent i� any simple random walk a.s. returns to its point
of origin an in�nite number of times.

In order to present the theorem, we need to de�ne the notion of unbiased random
graphs. If H is a �nite graph with degree bounded by D ∈ N, we take µH as the probability
measure such that for all A in Borel subset of RGD, µH(A) is the probability that (H, o) ∈
A when o is chosen uniformly among the vertices of H.

De�nition. A �nite random rooted graph is said unbiased if its distribution is in the
closed convex hull of the measures µH .

To put it in simply, a random rooted graph (G, o) is unbiased if for all H �nite, condi-
tioned to the event {G = H}, o is chosen uniformly among the vertices of H.

We can now express the main result of this section:

Theorem 1. [BS01] Let (G, o) be the Benjamini-Schramm limit of a sequence (Gn)n∈N of
unbiased, �nite, planar, simply connected graphs in RGD for some D ∈ N, then a.s. G is
recurrent.

In order to prove the theorem, we will prove:

Theorem 2. [BS01] Let (G, o) be the Benjamini-Schramm limit of a sequence (Gn)n∈N
of unbiased, �nite triangulations of the sphere in RGD for some D ∈ N, then a.s. G is
recurrent.

Proposition. Theorem 2 implies theorem 1.
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Proof. Let us suppose the proposition is true. We will prove that we can embed any �nite
planar G ∈ RGD in a triangulation of the sphere T such that T has degree at most 9D
and |V (Ti)| ≤ 9|V (Gi)|.

Due to the stereographic projection, we can consider G as a graph on the sphere. For
any face of the graph f , we note v1, ..., vn the vertices of this face (vi is connected to vi+1

for all i ∈ {1, ..., n− 1} and vn is connected to v1).
If for all (i, j) ∈ {1, ..., n}2 there is an edge between vi and vj iif |i− j| ≡ 1 [n], then we

can triangulate the face by zigzagging: for all i ∈ {1, ..., bn2 c}, we add the vertex (vi, vn−i)
and the vertex (vi, vn−i−1) (see �gure 2).

If there are other edges, we add some more vertices inside the face, u1, ..., un−1. We
add the edges linking ui to ui−1, u(i+1) mod (n−1), vi and vi+1. We can do the �rst step for
the face u1, ..., un (see �gure 3).

We can therefore associate a triangulation (Tn, on) to each (Gn, on). We can take a
subsequence of (Tn, on)n∈N that converges to a graph that is a.s. recurrent, and since
P(on ∈ Gn) ≥ 1

9 , we can use the Rayleigh monotonicity principle, that states that if a
subgraph is transient then the whole graph is transient too, to say that G converges. One
can look at [DS06] to learn more on the Rayleigh monotonicity principle.
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Figure 2: Case 1

(a) 1 (b) 3 (c) 3 (d) 4

Figure 3: Case 2

In the next section, we introduce some tools for the proof of the theorem 2. The reader
might want to only read the results and skip to 1.2.2 for the proof of the theorem.

1.2.1 Tools for the Proof

Circle Packings The proof fundamentally depends on the Koebe-Andreev-Thurston's
Circle Packing Theorem.
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Theorem 3. [Kob36] For any �nite planar simply connected triangulation G, there is a
circle packing whose tangency graph is G.

A circle packing is a set of circles on the plane whose intersections are at most punctual.
Its tangency graph is the graph whose vertices are the centers of the circles and where two
vertices are connected i� the two corresponding circles are tangent.

A proof of theorem 3 is found in [Ste05].

(a) Graph (b) Graph et circles (c) Circle packing

Figure 4: Illustration for the circle packing theorem

Proof. We assume that all triangulations have no vertex that separates the graph in two.
If it is the case, we can just apply the proof for the two triangulation we obtained and paste
the circle packing together (see case 1 for how to do that). The proof is a bit geometric
and the reader might want to refer to the drawings to understand each case of the proof.

To prove the result, we admit that for any �nite triangulation G if we can �nd a circle
packing with at least the right tangencies, that is with eventually more edges than G, then
there is a circle packing of G in the unit disc where boundary vertices (a vertex that is
in contact with the in�nite connected component of R2\G) are associated to horocycles
(discs tangent to the external disc) and the extraneous tangencies are no more.

We proceed by induction on the number of vertices. If G has 3 vertices, the result is
obviously correct. Let us now assume that the result is true for any graph of n vertices or
less. For any planar connected triangulation G with n+1 vertices, we can take a boundary
vertex v. We now have two cases to distinguish.

Case 1. If v is connected to another vertex u on the boundary by an interior egde e,
then we can cut G in two subgraphs G1 and G2 that are separated by e and such that
G1 ∩ G2 = {e}. By our induction hypothesis and the result we admitted, we have two
disc packing in the unit disc P1 and P2 for G1 and G2, where v and u are associated to
horocycles each time. In P1, the circles P

u
1 and P v1 associated to u and v are tangent and

tangent to the unit disc. We can therefore use a Möbius transformation of the disc that
sends P u1 and P v1 to the circles of radii 1/2 and centers (1/2, 0) and (−1/2, 0). If we do
the same type of tranformation in P2, we can paste the two circle packings we obtained.
We have a circle packing for G.
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(a) graph (b) circle packing for the separate graphs

(c) after transformation (d) after pasting the packing together

Figure 5: Illustration for case 1

Case 2: If v is only connected to interior vertices, then we can apply induction hypoth-
esis to G\{v}. We have a circle packing P in the unit disc where the boundary vertices
are associated to horocycles. The neighbours of v are therefore horocylces. We consider
R2\B(0, 1) as a disc centered in in�nity. We associate this disc to v. We can chose a disc
D in the unit disc that is disjoint from the carr(P ) and by a Möbius transformation, send
D to R2\B(0, 1). We now have a circle packing for G in the unit disc (with too many
edges). With the admitted result, we have the circle packing we wanted.
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(a) graph
(b) circle packing for the graph
without v (c) after transformation

Figure 6: Illustration for case 2

In these �gure, the red vertex is v and the blue circle is the one on which the inversion
is done. In the third �gure, we do not have the �nal circle packing, but we have enough
to apply the result we admitted.

Ring Lemma This result is proven in [RS87].

Theorem 4 (Ring lemma). If a circle R of radius 1 is surrounded by n circles R1, ..., Rn of
radii r1, ..., rn whose tangency graph is a cycle, then there is a c(n) ∈ R such that ri ≥ c(n)
for all i ∈ {1, ..., n}.

Figure 7: Example of con�guration for the Ring lemma
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Proof. Let us take R of radius 1 surrounded by n circles. The size of the biggest circle
has a uniform lower bound rm (size of the circle if all the n circles are the same size). The
left neighbour of the biggest circle also has a uniform lower bound under which the n− 1
circles are to remain in the cavity between the biggest circle and R. We can see that in
the case where the biggest circle is of radius rm. If it is bigger, the same lower bound will
apply to the radius of the left neighbour.

This operation can be repeated for all the circles which gives us the uniform bound.

Recurrence/transience The last result we need is a recurrence-transience result on the
circle packing. We use a less powerful form of the theorem proven in [BS90].

De�nition. We say that a point p is an accumulation point of a circle packing C if in
every neighbourhood of p there are an in�nity of circles of C

Proposition 1. If a circle packing has no accumulation point, then its tangency graph is
recurrent.

Proof. In order to prove this result, we need to introduce some background. In this section,
we only consider circle packings that are discrete, that is without points of accumulation,
and whose tangency graph are triangulations (which is relevant for what we need). The
very important result is the following:

Theorem 5. A simply connected graph without boundary is the tangency graph of a discrete
circle packing on exactly one of the three simply connected Riemann surfaces (the Riemann
sphere, the Poincaré disc and the plane).

This result is proven in [Ste05], we admit it. This is a stronger result than the one we
showed before. The circle packing is on the Riemann sphere i� the graph is �nite. For the
other cases, we have the following theorem:

Theorem 6. [McC98] Let R be either the disc or the plane and G the tangency graph of
a circle packing on R. Then R is the plane i� G is recurrent.

We prove this result partially. In our case, we know that R is the plane. Therefore, we
only need to show that if G is transient, then R is the disc.

We say that a riemannian manifold R is transient if the integral over time of its solution
of the heat equation is �nite, or equivalently if :

∃U ⊂ R, C > 0, such that ∀ϕ ∈ C2
c (R)

(∫
U
ϕ

)2

≤ C
∫
R
‖∇ϕ‖2.

We admit the following:

Proposition. The plane is recurrent and the disc is transient.

We now need to prove that if the tangency graph of a discrete circle packing is transient,
then the surface supporting the circle packing is transient, and is therefore the disc.

In order to do that, we admit that a graph G is transient i� there exists a vertex x0

and a constant C such that for all f ∈ C(R) :

f(x0)2 ≤ C
∑

(x,y)∈E

(f(x)− f(y))2,
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where E is the set of edges of G.
These two last results are known as the Dirichlet criterion.

We can now prove the proposition. If G, the tangency graph of a discrete circle packing,
is transient, let x0 be a vertex as described in the Dirichlet criterion and ϕ ∈ C2

c (R). For
all x vertex of G, we consider the union U(x) of all the faces of G that meet x. We take
some f such that f(x) is the average of ϕ over U(x). Therefore we have,

f(x0) =
1

|U(x0)|

∫
U(x0)

ϕ(x) dx ≤

C ∑
(x,y)∈E

(f(x)− f(y))2

 1
2

.

Furthermore, we have, for any x, y vertices of G:

f(y)− f(x) =
1

|U(x)| × |U(y)|

∫
U(x)

∫
U(y)

ϕ(a)− ϕ(b) da db

≤ 1

|U(x)| × |U(y)|

∫
V×V

|ϕ(a)− ϕ(b)| da db.

Where V is the smallest disc containing U(x) and U(y).∫
V×V

|ϕ(a)− ϕ(b)| da db ≤
∫
V×V

∫ 1

0
||∇ϕ(a+ t(b− a))|| dt da db

=

∫
V
||∇ϕ(ν)|| |Eν | dν

=

∫
V
||∇ϕ(ν)||

∫
V
|Eν,a| da dν

≤ diameter(V ).|V |
∫
V
||∇ϕ(ν)|| dν

where Eν = {(a, b) ∈ V × V : ν ∈ [a, b]} and Eν,a = {b : ν ∈ [a, b]}. Since |V |, |U(x)| and
|U(y)| are all within constant factor by the Ring lemma, we have:

(f(x)− f(y))2 ≤ C ′ 1

|V |

(∫
V
||∇ϕ(ν)|| dν

)2

≤ C ′
∫
V
||∇ϕ(ν)||2 dν

for some constant C. This gives us:(∫
U(x0)

ϕ(x)dx

)2

= f(x0)2 ≤
∑

(x,y)∈E

(f(x)− f(y))2 ≤ K
∫
R
||∇ϕ(ν)||2 dν

The right hand inequality is another consequence of the Ring lemma and the summation
over all edges. Therefore R is transient, it is the disc.

1.2.2 Recurrence for triangulations

Theorem. Let (G, o) be the Benjamini-Schramm limit of a sequence (Gn)n∈N of unbiased,
�nite triangulations of the sphere in RGD for some D ∈ N, then a.s. G is recurrent.
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Proof. For all n ∈ N, we can use the Circle Packing Theorem to associate to Gn a random
circle packing Pn. We note Pnv the circle associated to the vertex v in Pn. We can consider
that Pnon is B(0, 1).

There are only three circles in Pn that are in contact with the in�nite component of
R2\Pn. These are the three vertices of the triangle containing the opposite pole from
which we do the stereographic projection. We note t1, t2, t3 the associated circles.

Any circle of Pn\{t1, t2, t3} is surrounded by other circles, we can therefore use the
Ring Lemma.

We take k ∈ N∗. Since |V (Gn)| → ∞, with high probability, BGn(on, k)∩ {t1, t2, t3} =
∅, BGn(on, k) is the ball of center on and radius k for the combinatoric distance. By the
Ring Lemma, there is a constant c depending only on D and k such that for all circle at a
combinatoric distance less than k from on, the radius is in [1/c, c].

By compactness, there is a subsequence of Pn that converges to a random circle packing
P whose tangency graph is G.

Proposition 2. There is at most one accumulation point in P .

Proof. To prove this proposition, a lemma is needed.

De�nition. Let C be a �nite set of points in R2. We de�ne the isolation radius of a point
w ∈ C as ρw = min{|v − w|, v ∈ C\{w}}.

We say that w is (δ, s)-supported (δ ∈]0, 1[, s ∈ N, s ≥ 2) if the circle B(w, δ−1ρw)
contains at least s points of C that are not in B(p, δρw) for any p ∈ C.

Lemma 1. The number of (δ, s)-supported points in C is at most K|C|
s for some constant

K that depends only on δ.

We will prove this lemma at the end of this section. If it is true, and if there is a
positive probability α that there are two accumulation points p1, p2 in C, then we can take
δ such that p1, p2 ∈ B(0, δ−1) and such that |p1 − p2| ≥ 3δ. Then for arbitrarily large s,
there are in�nitely many j such that with probability α, oj is (δ, s)-supported in the set
of centers of P j . Since oj is chosen uniformly, it means that a proportion α of the centers
are (δ, s)-supported for arbitrarily large s. This contradicts the lemma.

If P has no accumulation point, by the result we showed earlier, G is recurrent.
If P has one accumulation point p, we consider the graph F whose vertices are the

center of the circle at a geometric distance less than one to p, the edges being the same
as in G. G\F has no accumulation point, thus it is recurrent. Moreover, by inverting the
circle of center p and radius 1, we obtain a graph isomorphic to F with non accumulation
point, thus recurrent. Since G\F and F are connected by a �nite number of edges, G is
recurrent.

1.2.3 Proof of the lemma

Lemma. The number of (δ, s)-supported points in C is at most K|C|
s for some constant K

that depends only on δ.
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Proof. In order to prove the lemma, we need to work on square tiling of the plane.
Let k ∈ N such that k ≥ 3. We consider a sequence (Γn)n∈Z of square tiling, where for

all n ∈ Z, all the square in Γ are the same size and each is tiled by k2 squares of Γn−1.

We can assume that no point of C is on the boundary of any square in
⋃
n∈Z

Γn.

Let n ∈ Z, we say that S ∈ Γn is s-supported if for every S
′ ∈ Γn−1 we have |C∩S\S′| ≥

s (s ≥ 2). To estimate the number σ of s-supported squares in
⋃
n∈Z

Γn, we introduce the

�ow f :

f(S′, S) :=


min(s/2, |S′ ∩ C|) if S ∈ Γn, S

′ ∈ Γn−1, S
′ ⊂ S

0 if S ∈ Γn, S
′ ∈ Γn−1, S

′ * S
−f(S, S′) if S′ ∈ Γn, S ∈ Γn−1

0 otherwise

We take a ∈ Z small enoug such that any square of Γa contains at most one point of C.
Then, we have: ∑

S′∈Γa

∑
S∈Γa+1

f(S′, S) = |C|

And for any b ∈ Z∩]a; +∞[, we have:∑
S′∈Γb

∑
S∈Γb+1

f(S′, S) ≥ 0

Therefore:
b∑

n=a+1

∑
S∈Γa

∑
S′∈∪n∈ZΓn

f(S′, S) ≤ |C|

We know by de�nition that for any S ∈
⋃
n∈Z

Γn,
∑

S′∈∪n∈Z f(S′, S) ≥ 0, and if S is s-

supported, then
∑

S′∈∪n∈Z f(S′, S) ≥ s/2. We have:

σ
s

2
≤

b∑
n=a+1

∑
S∈Γa

∑
S′∈ ∪n∈ZΓn

f(S′, S) ≤ |C|

Therefore σ ≤ |C|2s .
We can now estimate the number of (δ, s)-supported points in C with σ. We now

choose Γ = (Γn)n∈Z randomly. We take k = b20δ−1c. We want to have a distribution of
Γ such that ∪n∈ZΓn has a distribution invariant under rescaling and translation and such
that the Γ0 has a radius in [1; k[.

We take a random sequence (αn)n∈Z where the αn are independent and uniformly
distributed in {1, ..., k − 1}2 and β independent from (αn)n∈Z and chosen uniformly in
[0; log(k)[ and we de�ne:

Γn = {exp(β)kn[j; j + 1]× [j′; j′ + 1] + exp(β)

n−1∑
m=−∞

kmαm, j, j
′ ∈ Z}

We say that point w ∈ C is a city in a square S ∈
⋃
n∈Z

Γn if the size of S are of length in

[4ρw; 5ρw] and the distance between w and the center of S is at most δ−1ρw.
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If w is a city of a square S and w is (δ, s)-supported in C, then S is s-supported.
Moreover, there is a constant c0 that depends only on k such that a point in C has
probability at least c0 of being a city for a certain square ofS. If we note N the number
of (δ, s)-supported points in C, and γ the number of couple (w, S) where w is a city of S
and S is s-supported, the c0N ≤ γ. Moreover, there is a constant c1 such that a square
cannot have more that c1 cities in it (by area considerations). We have:

Nc0/c1 ≤ σ ≤ |C|
2

s

The lemma is proven.
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2 Study of a Group Walk Random Graph

A Group Walk Random Graph F is de�ned as follow. Take G a locally �nite, that is
with vertices of �nite degree, graph. Take R a recurrent set of vertices of G, this is the
deterministic set of vertices of our random graph F .

From each vertex x of R, we start (independently from each vertex) a simple random
walk on G. Let y ∈ R be the �rst vertex in R that the random walk meets, then we add
the vertex (x, y) to the set of vertex of F .

We reiterate this operation independently a random number (following a law P) of
times independently for each vertex of R and the random graph is constructed.

The graph we obtain is not necessarily simple, there can be more than one edge between
two vertices of F . However, this does not impact our study and the reader might not want
to consider the extra edges.

In this paper, see �g. 8, G is the canopy tree, R is the set of the leaves and P follows
a Poisson distribution of parameter λ. To have more details on GWRG, one can refer to
[Geo15].

We count the height with the leaves being of height 0 and the parents being of height
1 more than their children. We note h(x) the height of a vertex x. We call the vertex that
is on the left hand of all others vertices the root.

We de�ne the con�uent of two leaves as the height of their smallest common ancestor.
We also de�ne Lh to be the set of vertices that have a con�uent with the root equal to

h.

Figure 8: Canopy tree, where L0 to L3 are pictured

Proposition 3. Let x, y ∈ R, the probability that a random walk from x ends in y is
Θ(4−k) where k is the height of the con�uent between x and y.

Proof. Let us note H the maximum height of the random walk. If (Xi)i∈N is our random
walk from x, then 2h(Xi) is a martingale and by the optional stopping theorem we have:

P(H ≥ h) =
1

2h − 1

Therefore, we have:

P(H = h) =
2h

(2h − 1)(2h+1 − 1)
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We can now calculate

P(X∞ = y) =

∞∑
h=k

P(x→ y|H = h)P(H = h)

=

∞∑
h=k

1

2h
2h

(2h − 1)(2h+1 − 1)

We have P(X∞ = y) = Θ(4−k)

It is easy to see that the number of edges between x and y follows a Poisson law of
parameter 2λP(X∞ = y). In the rest of the paper, to light notations, we will consider that
P(X∞ = y) = 4−k. This simpli�cation changes the parameters we consider by at most a
constant, so all results also hold for the original model.

2.1 Distribution of the simple degree

The simple degree of the graph is the number of vertices that send at least one walk to the
root. The calculus its mean has been done in [GH16].

2.1.1 The mean

Proposition 4. The mean of the simple degree is Θ(
√
λ).

Proof. The simple degree can be described as δ =
∑
h∈N

∑
x∈Lh

δx where δx are independent

Bernoulli's Law of parameter (1− exp−λ4−h), h being the smallest k such that x ∈ Lk.
Therefore we have:

E[δ] =
∑
h∈N

∑
x∈Lh

E[δx]

=
∑
h∈N

∑
x∈Lh

(1− exp−λ4−h)

=
∑
h∈N

2h(1− exp−λ4−h)

We take N = log4(λ),

E[δ] =
N∑
h=0

2h(1− exp−λ4−h)︸ ︷︷ ︸
A

+
∞∑

h=N+1

2h(1− exp−λ4−h)︸ ︷︷ ︸
B

For h ≤ N , (1− exp(−1)) ≤ (1− exp−λ4−h) ≤ 1, thus A = Θ(2N ) = Θ(
√
λ).

For h� N , (1− exp−λ4−h) = Θ(λ4−h), we have:

B = Θ(
∑
h≥N

2hλ4−h) = Θ(
λ√
λ

)
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2.1.2 The variance

Proposition 5. The variance of the simple degree is Θ(
√
λ).

Proof. We use the same notations as before to describe the simple degree.
We have

E[δ2] = E

∑
h∈N

∑
x∈Lh

δx

2 (1)

= E

∑
h∈N

∑
x∈Lh

δ2
x

+ E

∑
h∈N

∑
x∈Lh

δx∑
k∈N

∑
y∈Lk,y 6=x

δy

 (2)

=
∑
h∈N

∑
x∈Lh

E
[
δ2
x

]
+
∑
h∈N

∑
x∈Lh

E [δx]
∑
k∈N

∑
y∈Lk,y 6=x

E [δy]

 (3)

=
∑
h∈N

∑
x∈Lh

E
[
δ2
x

]
+
∑
h∈N

∑
x∈Lh

E [δx]
∑
k∈N

∑
y∈Lk

E [δy]

−∑
h∈N

∑
x∈Lh

E [δx]2 (4)

=
∑
h∈N

∑
x∈Lh

(E
[
δ2
x

]
− E [δx]2)︸ ︷︷ ︸

=V ar(δ)

+
∑
h∈N

∑
x∈Lh

E [δx]
∑
k∈N

∑
y∈Lk

E [δy]︸ ︷︷ ︸
=E[δ]2

(5)

To get from (3) to (4) we use the independence of the laws. Since we know that E[δ] =
Θ(
√
λ), we only have to calculate V ar(δ).

V ar(δ) =
∑
h∈N

∑
x∈Lh

(E
[
δ2
x

]
− E [δx]2)

=
∑
h∈N

∑
x∈Lh

(E [δx]− E [δx]2)

=
∑
h∈N

2h((1− exp−λ4−h)− (1− exp−λ4−h)2)

=
∑
h∈N

2h((1− exp−λ4−h) exp−λ4−h)

We take N = log4(λ).

For h ≤ N , we have (1− exp−λ4−h) exp−λ4−h = Θ(1)
N∑
h=0

2h((1− exp−λ4−h) exp−λ4−h) = Θ(2N ) = Θ(
√
λ)

For h� N , we have (1− exp−λ4−h) exp−λ4−h = Θ(λ4−h(1− λ4−h))
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Therefore

∞∑
h=N

2h(1− exp−λ4−h) exp−λ4−h = Θ(

∞∑
h=N

2hλ4−h(1− λ4−h)) (6)

= Θ(

∞∑
h=N

λ2−h − λ28−h)) (7)

= Θ(2λ 2−N︸︷︷︸
√
λ

−8

7
λ2 8−N︸︷︷︸

=λ
√
λ

)) (8)

= Θ(
√
λ) (9)

We have V ar(δ) = Θ(
√
λ).

2.1.3 The distribution

We note the simple degree δ. In this section we will calculate P(δ = k) for any k ∈ N. We
note px the probability that there is an edge from x to the root. Thus px = (1−exp(−λ4−h))
where h is the height of the con�uent between the root and x.

Proposition 6. Let k ∈ N, we have P(δ = k) = Θ(exp(−2λ)
√
λ
k
) when λ→∞.

Proof. Let us calculate P(δ = 0).

P(δ = 0) =
∞∏
h=0

∏
x∈Lh

(1− px)

=
∞∏
h=0

∏
x∈Lh

exp(−λ4−h)

=
∞∏
h=0

exp(−λ2−h)

= exp(−λ
∞∑
h=0

2−h)

= exp(−2λ)

Let us take k ∈ N?. We �rst prove that P(δ = k) = O(exp(−2λ)
√
λ
k
).
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P(δ = k) =
∑

x1,...,xk∈L∞
xi 6=xj

k∏
i=1

pxi
∏

x/∈{x1,...,xk}

(1− px)

=
∑

x1,...,xk∈L∞
xi 6=xj

k∏
i=1

pxi
1− pxi

P(δ = 0)

≤ P(δ = 0)
∑

x1,...,xk∈L∞

k∏
i=1

pxi
1− pxi

= P(δ = 0)

( ∑
x∈L∞

px
1− px

)k

= P(δ = 0)

 ∞∑
h=0

∑
x∈Lh

exp(λ4−h)− 1

k

= Θ(exp(−2λ)
√
λ
k
)

The last calculus is the same as the one we did in the calculus of the mean.
In order to prove exp(−2λ)

√
λ
k

= O(P(δ = k)), we introduce the following.

De�nition. Let h such that 2h ≥ k and (Lkh,i)i∈{1,...,k} be a partition of Lh such that

#Lkh,i = b2h

k c+ 1 for i ≤ k − 1. Lkh,k is de�ned as the remaining, thus #Lkh,k ≤ b
2h

k c

The idea here is to have a product of k sums that do not depend on each other. In
order to do that, we only take into account a di�erent part of the vertices in each sum.
This gives us a lower bound for P(δ = k).

P(δ = k) =

∞∑
h1=0

∑
x1∈Lh1

...

∞∑
hk=0

∑
xk∈Lhk

xk /∈{x1,...,xk−1}

k∏
i=1

pxi
∏

x/∈{x1,...,xk}

(1− px) (10)

=

∞∑
h1=0

∑
x1∈Lh1

...

∞∑
hk=0

∑
xk∈Lhk

xk /∈{x1,...,xk−1}

k∏
i=1

pxi
1− pxi

P(δ = 0) (11)

≥ P(δ = 0)
∞∑

h1=0

∑
x1∈Lkh1,1

...

∞∑
hk=0

∑
xk∈Lkhk,k

k∏
i=1

pxi
1− pxi

(12)

= P(δ = 0)
∞∑

h1=0

∑
x1∈Lkh1,1

px1
1− px1

...
∞∑

hk=0

∑
xk∈Lkhk,k

pxk
1− pxk

(13)

≥ P(δ = 0)

(
1

2k

)k ∞∑
h=0

∑
x∈Lh

exp(−λ4−h)− 1

k

(14)

= Θ(exp(−2λ)
√
λ
k
) (15)
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We can go from (13) to (14) because∑∞
hi=0

∑
xi∈Lkh,1

px1
1−px1

≥ 1
2k

∑∞
h=0

∑
x∈Lh exp(−λ4−h)− 1.

Moreover the calculus of
∑∞

h=0

∑
x∈Lh exp(−λ4−h)− 1 is the same as the one that has

been done in the previous sections.

2.2 Size of the largest clique containing the root

Here we calculate the size S ∈ N of the largest complete subgraph containing the root. We
do not take into account the edges that originate from the root and we actually have an
estimation of S when the subgraph contains all the �rst vertices.

Proposition 7. There are two deterministc constant c and c′ such that, with probability

going to one as λ goes to in�nity, c
√

λ
log(λ) ≤ S ≤ c

′
√

λ
log(λ) .

Proof. In order to have that estimation, we only need to compute the probability that the
�rst 2n vertices are in the graph. We note pn that probability.

pn = p2
n−1(1− exp(−λ4−n))2n

=
n∏
i=1

(1− exp(−λ4−i))4n−i2i

Thus we have, pn ≤ (1−exp(−λ4−n))2n . We take λ = n
2 4n, we have pn ≤ (1−exp(−n

2 ))2n .
We want to prove that pn → 0, which is the same as log(pn)→ −∞.
We have log(pn) ≤ 2n log(1− exp(−n

2 )).
We also have log(1− exp(−λ4−n)) ∼ exp(−n

2 ) and 2n exp(−n
2 )→ −∞, we have the result.

We can also use the Bernoulli's inequality.

pn ≥
n∏
i=1

(1− exp(−λ4−i)4n−i2i)

≥
n∏
i=1

(1− exp(−λ4n)4n)

We take λ = 4n log(2)4n, we have pn ≥ 1− exp(−4n log(2))4n → 1

We have the result, this is equivalent to say that we have a clique of size Θ(
√

λ
log(λ)).

We now want to prove that there is clique bigger by more than a constant factor than this

one.
There is two steps to this process, �rst we prove that for N greater than

√
λlog(λ)

the root is not link to more vertices than Θ(
√

λ
log(λ)) further away than N2N . Then we

prove that if a clique as more than Θ(
√

λ
log(λ)) vertex in one tree, it is not likely to expand.

Therefore the root is in a clique of size at most Θ(
√

λ
log(λ)).

We can easily calculate the average number X of neighbours of the root which have a
con�uent greater than log4(λlog(λ))) with the root. It is the same sum as in the calculus
of the mean of the simple degree, from a di�erent starting point.
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E[X] =

∞∑
h=N+1

2h(1− exp−λ4−h)

With N = blog4(λlog(λ)))c. With the same type of argument as before, we have:

E[X] = Θ

( ∞∑
h=N+1

2hλ4−h

)
= Θ(λ2−N )

= Θ

(√
λ

log(λ)

)

Therefore, if there is another clique than the one we already know, it has to be in the �rst
2N vertices.

We want to divide these 2N vertices into trees of the same size. We take n ∈ N such
that 2N = n2n. We have 2n = Θ(

√
λ

log(λ)).

Let us take α ∈)0; 1(. If there is a clique of size Θ(
√

λ
log(λ)), as shown in the next

paragraph, with high probability, one of those trees T contains α
√

λ
log(λ) vertices of that

clique. The probability that a vertex from a di�erent tree is linked to α
√

λ
log(λ) vertices

T is lower than p = 2n(1− exp(−4−nλ))
α
√

λ
log(λ)

√
λ

log(λ) . Moreover, the probability that k

vertices are linked to α
√

λ
log(λ) vertices T is lower than pk. Therefore, the probability that

there is a clique in those two trees is lower than p
1−p . Summing on all the trees, we have

np
1−p , this goes to 0 when λ goes to in�nity. Therefore, there is a very little chance that a
clique bigger than the one we know and this probability goes to zero.

If none of the subtrees contains α
√

λ
log(λ) vertices of that clique, then a constant pro-

portion of edges go between subtrees. The probability of a speci�c set of vertices of that

form being a clique is at most (1 − exp(−4nλ))
c λ
log(λ) for c = 1−α

2 . But the number of

possible subsets is at most (2N )

√
λ

log(λ) , so the probability that any of them work is at most

(2N )

√
λ

log(λ) (1− exp(−4nλ))
(c λ

log(λ)
))
, which goes to zero.

We have the result.
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