A Short Proof of Fleischner's Theorem

Agelos Georgakopoulos

Mathematisches Seminar
Universität Hamburg
Bundesstraße 55
20146 Hamburg
Germany

June 23, 2009

Abstract

We give a short proof of the fact that the square of a 2-connected finite graph is Hamiltonian.

Keywords: Hamilton cycle, Fleischner's theorem

1 Introduction

The square G^{2} of a graph G is the graph on $V(G)$ in which two vertices are adjacent if and only if they have distance at most 2 in G. In 1974, Fleischner [3, 4] proved that the square of every 2-connected finite graph has a Hamilton cycle. Thomassen [7] extended this fact to locally finite 1-ended graphs, where a Hamilton cycle is taken to be an infinite path containing all vertices. Using Thomassen's method, Říha (see [8] or [2]) produced a shorter proof of Fleischner's Theorem. History repeated itself, and once again the study of infinite graphs led to a new proof of Fleischner's Theorem: a proof is presented here that uses an idea developed for the recent extension of Fleischner's Theorem to locally finite graphs with any number of ends ${ }^{1}$ to shorten Říha's proof.

In [5] the present proof is adapted to give a short proof of another theorem of Fleischner [3], stating that the total graph of every finite 2-edge-connected graph has a Hamilton cycle.

2 Definitions

We will be using the terminology of [2]. Let G be a multigraph, and J a walk in G. A pass of J through a vertex x is a subwalk of J of the form uexfv, where e and f are edges. By lifting this pass we mean replacing it in J by the walk

[^0]$u g v$, where g is a $u-v$ edge, if $u \neq v$, or by the trivial walk u if $u=v$ (in fact, the latter case will never occur).

A double edge is a pair of parallel edges, and a multipath is a multigraph obtained from a path by replacing some of its edges by double edges. If $C \subseteq$ G are multigraphs, then a C-trail in G is either a path having precisely its endvertices (but no edge) in common with C, or a cycle having precisely one vertex in common with C. A vertex y on some cycle C is called C-bound if all neighbours of y lie on C.

3 The proof

We will use the following lemma of Říha [8]. For the convenience of the reader the proof is repeated here.

Lemma 1. If G is a 2-connected finite graph and $x \in V(G)$, then there is a cycle $C \subseteq G$ that contains x as well as a C-bound vertex $y \neq x$.

Proof. As G is 2-connected, it contains a cycle C^{\prime} that contains x. If C^{\prime} is a Hamilton cycle there is nothing more to show, so let D be a component of $G-C^{\prime}$. Assume that C^{\prime} and D are chosen so that $|D|$ is minimal. Easily, C^{\prime} contains a path P^{\prime} between two distinct neighbours u, v of D whose interior $\stackrel{\circ}{P}^{\prime}$ does not contain x and has no neighbour in D. Replacing P^{\prime} in C^{\prime} by a $u-v$-path through D, we obtain a cycle C that contains x and a vertex $y \in D$. By the minimality of $|D|$ and the choice of P^{\prime}, y has no neighbour in $G-C$, so C satisfies the assertion of the lemma.

We will prove Fleischner's Theorem in the following stronger form, which is similar to the assertion proved by Říha [8].

Theorem 1. If G is a 2-connected finite graph and $x \in V(G)$, then G^{2} has a Hamilton cycle whose edges at x lie in $E(G)$.

Proof. We perform induction on $|G|$. For $|G|=3$ the assertion is trivial. For $|G|>3$, let C be a cycle as provided by Lemma 1. Our first aim is to define, for every component D of $G-C$, a set of C-trails in $G^{2}+E^{\prime}$, where E^{\prime} will be a set of additional edges parallel to edges of G. Every vertex of D will lie in exactly one such trail, and for every such trail T and every edge e of T incident with a vertex of C, e will lie in $E(G)$ or in E^{\prime}.

If D consists of a single vertex u, we pick any C-trail in G containing u, and let E_{D} be the set of its two edges. If $|D|>1$, let \tilde{D} be the (2-connected) graph obtained from G by contracting $G-D$ to a vertex \tilde{x}. Applying the induction hypothesis to \tilde{D}, we obtain a Hamilton cycle \tilde{H} of \tilde{D}^{2} whose edges at \tilde{x} lie in $E(\tilde{D})$. Write \tilde{E} for the set of those edges of \tilde{H} that are not edges of G^{2}. Replacing these by edges of G or new edges $e^{\prime} \in E^{\prime}$, we shall turn $E(\tilde{H})$ into the edge set of a union of C-trails. Consider an edge $u v \in \tilde{E}$, with $u \in D$. Then either $v=\tilde{x}$, or u, v have distance at most 2 in \tilde{D} but not in G, and are hence neighbours of \tilde{x} in \tilde{D}. In either case, G contains a $u-C$ edge. Let E_{D} be obtained from $E(\tilde{H}) \backslash \tilde{E}$ by adding at every vertex $u \in D$ as many $u-C$ edges as u has incident edges in \tilde{E}; if u has two incident edges in \tilde{E} but sends only one edge e to C, we add both e and a new edge e^{\prime} parallel to e. Then every vertex of D has the same degree (two) in $\left(V(G), E_{D}\right)$ as in \tilde{H}, so E_{D} is the edge set
of a union of C-trails. Let $G^{\prime}:=\left(V(G), E(C) \cup \bigcup_{D} E_{D}\right)$ be the union of C and all those trails, the union taken over the set of all components D of $G-C$.

Let y be a C-bound vertex of C and pick a vertex z and edges $d_{1}, d_{2}, g_{1}, g_{2}$ of C, so that $C=x g_{1} z \ldots d_{1} y d_{2} \ldots g_{2} x$ (the vertices and edges named here need not be distinct). We will add parallel edges to some edges of $C-g_{1}$, to turn G^{\prime} into an eulerian multigraph G_{\emptyset} - i.e. a connected multigraph in which every vertex has even degree (and which therefore has an Euler tour [2]). Every vertex in $G^{\prime}-C$ already has degree 2 . In order to obtain even degrees at the vertices in C we consider these vertices in reverse order, starting with x and ending with z. Let u be the vertex currently considered, and let v be the vertex to be considered next. Add a new edge parallel to $u v$ if and only if u has odd degree in the multigraph obtained from G^{\prime} so far. When finally $u=z$ is considered, every other vertex has even degree, so by the "hand-shaking lemma" z must have even degree too and no edge parallel to g_{1} will be added. Let G_{\emptyset} be the resulting multigraph, and let $C_{\varnothing}=G_{\gamma}[V(C)]$.

If g_{2} has a parallel edge g_{2}^{\prime} in G_{\emptyset}, then delete both g_{2}, g_{2}^{\prime}. If g_{2} has no parallel edge, and d_{2} has a parallel edge d_{2}^{\prime}, then delete both d_{2} and d_{2}^{\prime}. Let $G_{\#}$ be the resulting (eulerian) multigraph. If g_{2} has been deleted, then let P_{3} be the multipath $C_{\varnothing}-\left\{g_{2}, g_{2}^{\prime}\right\}$. If not, let P_{1} be the maximal multipath in C_{\varnothing} with endvertices x, y containing g_{1}, and let P_{2} be the multipath containing all edges in $E\left(C_{\emptyset} \cap G_{\varnothing}\right)-E\left(P_{1}\right)$ (Figure 1).

Figure 1: The paths P_{i} (three cases). The bold edges are known to be single.
Our plan is to find an Euler tour J^{\prime} of $G_{\mathbb{X}}$ that can be transformed into a Hamilton cycle of G^{2}. In order to endow J^{\prime} with the required properties we will derive it from an Euler tour of an auxiliary multigraph, which we define next.

For every i such that P_{i} has been defined, do the following. Write $P_{i}=$ $x_{0}^{i} x_{1}^{i} \ldots x_{l_{i}}^{i}$ with $x_{0}^{i}=x$, and e_{j}^{i} or just e_{j} for the $x_{j-1}^{i}-x_{j}^{i}$ edge of P_{i} in $E(C)$. Its parallel edge, if it exists, will again be denoted by e_{j}^{\prime} (when i is fixed). Now for $j=1, \ldots, l_{i}-1$, if e_{j+1}^{\prime} exists, replace e_{j} and e_{j+1}^{\prime} by a new edge f_{j} joining x_{j-1} to x_{j+1}; we say that f_{j} represents the walk $x_{j-1} e_{j} x_{j} e_{j+1}^{\prime} x_{j+1}$ (Figure 2). Note that every such replacement leaves the current multigraph connected, and it preserves the parity of all degrees. Hence, the multigraph G^{\varangle} finally obtained by all these replacements is eulerian, so pick an Euler tour J of G^{\varangle}. Transform J into an Euler tour J^{\prime} of G_{\ngtr} by replacing every edge in $E(J)-E\left(G_{\Downarrow}\right)$ by the walk it represents.

Our next aim is to perform some lifts in J^{\prime} to transform it into a Hamilton cycle. To this end, we will now mark some passes for later lifting. Start by marking all passes of J^{\prime} through x except for one arbitrarily chosen pass. We

Figure 2: Replacing e_{j} and e_{j+1}^{\prime} by a new edge f_{j}.
want to mark some more passes, so that for any vertex $v \in V(C)-x$ the following assertion holds:
for any i, j, if $v=x_{j}^{i}$ then all passes of J^{\prime} through v are marked except for the pass containing e_{j}^{i}.

This is easy to satisfy for $v \neq y$, as there is precisely one pair i, j so that $v=x_{j}^{i}$ in that case. A difficulty can only arise if $v=y=x_{l_{1}}^{1}=x_{l_{2}}^{2}$, in case both P_{1} and P_{2} contain y. By the definition of the P_{i}, this case only materialises if there are no edges $g_{2}^{\prime}, f_{2}^{\prime}$ in G_{\emptyset}, and as y is C-bound, it has degree at most 3 and hence degree 2 in G_{\emptyset} in that case. But then, there is only one pass of J^{\prime} through v, which consists of $e_{l_{1}}^{1}, e_{l_{2}}^{2}$, and leaving it unmarked satisfies (1).

So we assume that (1) holds, and now we claim that
for every edge $e=u v$ in J^{\prime}, at most one of the two passes of J^{\prime} that contain e is marked, and moreover if $u=x$, then the pass of J^{\prime} through v containing e is unmarked.

This is clear for edges in $E\left(G_{\varnothing}\right)-E\left(C_{\varnothing}\right)$, so pick an $e \in P_{i}$. If $e=e_{j}$ for some j, then by (1) the pass of J^{\prime} through x_{j}^{i} containing e is unmarked; in particular, if e is incident with $x=x_{0}^{i}$, then $j=1$ and the pass of J^{\prime} through x_{1}^{i} containing e is unmarked. If $e=e_{j}^{\prime}$, then e is not incident with x by the construction of G_{\varnothing}, and an edge f_{j-1} was defined to represent the walk $x_{j-2} e_{j-1} x_{j-1} e_{j}^{\prime} x_{j}$. Since J contained f_{j-1}, this walk is a pass in J^{\prime}. This pass is unmarked by (1), because it is a pass through x_{j-1} containing e_{j-1}.

So we proved our claim, which implies that no two marked passes share an edge. Thus we can now lift each marked pass of J^{\prime} to an edge of G^{2}, to obtain a new closed walk H^{\prime} in $G^{2}+E^{\prime}$. Every vertex of G is traversed precisely once by H^{\prime}, since by (1) we marked, and eventually lifted, for each vertex v of G all passes of J^{\prime} through v except precisely one pass. (This is trivially true for a vertex u in $G-C$, as there is only one pass of J^{\prime} through u and this pass was not marked.) In particular, H^{\prime} cannot contain any pair of parallel edges, so we can replace every edge e^{\prime} in H^{\prime} that is parallel to an edge e of G by e to obtain a Hamilton cycle H of G^{2}. Since by the second part of (2) no edge incident with x was lifted at its other end, both edges of H at x lie in G as desired.

4 Total graphs

The subdivision graph $S(G)$ of a graph G is the bipartite graph with partition classes $V(G), E(G)$ where $x \in V(G)$ and $e \in E(G)$ are joined by an edge if x is incident with e in G. The total graph $T(G)$ of G is the square of $S(G)$; equivalently, $T(G)$ is the graph on $V(G) \cup E(G)$ where two vertices are adjacent if the respective objects are adjacent or incident in G. Fleischner [3] proved that:

Theorem 2. If G is a finite, 2-edge-connected graph then $T(G)$ has a Hamilton cycle.

In [5] the proof of Section 3 was adapted to give a short proof of Theorem 2, exploiting the fact that $T(G)$ is the square of a graph. We do not repeat that proof here, but we will point out the main differences to the proof in Section 3.

Instead of looking for a cycle C with a C-bound vertex, we just pick any cycle C in G; the reason is that later we will consider the subdivision graph C^{\prime} of C, and then any of the vertices of degree 2 that will arise after subdividing an edge will be C^{\prime}-bound. Again we use induction, and apply the induction hypothesis to all components of $S(G)-S\left(C^{\prime}\right)$ to obtain a set of C^{\prime}-trails covering all vertices in $S(G)-S\left(C^{\prime}\right)$ (this step is more complicated though). After constructing the C^{\prime}-trails we have a very similar situation to that in the proof of Section 3, and we can proceed in the same way; the fact that we have a big choice of C^{\prime}-bound vertices only simplifies the proof.

References

[1] R. Diestel. The cycle space of an infinite graph. Comb., Probab. Comput., 14:59-79, 2005.
[2] R. Diestel. Graph Theory (3rd edition). Springer-Verlag, 2005.
Electronic edition available at:
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory.
[3] H. Fleischner. On spanning subgraphs of a connected bridgesess graph and their application to DT-graphs. J. Combin. Theory (Series B), 16:17-28, 1974.
[4] H. Fleischner. The square of every two-connected graph is hamiltonian. J. Combin. Theory (Series B), 16:29-34, 1974.
[5] A. Georgakopoulos. Topological paths and cycles in infinite graphs, $P h D$ thesis. Universität Hamburg, 2006.
[6] A. Georgakopoulos. Infinite hamilton cycles in squares of locally finite graphs. Adv. Math., 220:670-705, 2009.
[7] C. Thomassen. Hamiltonian paths in squares of infinite locally finite blocks. Annals of Discrete Mathematics, 3:269-277, 1978.
[8] S. Říha. A new proof of the theorem by Fleischner. J. Combin. Theory (Series B), 52:117-123, 1991.

[^0]: ${ }^{1}$ Settling a problem of Diestel [1], it is shown in [6] that the square of every locally finite 2-connected graph contains a Hamilton circle, a homeomorphic image of the real unit circle S^{1} in the topological space $|G|$ formed by G and all its ends.

