On the expected size of a patriarchal mafia with Poisson distributed collaborations

Agelos Georgakopoulos
THE UNIVERSITY OF
WARWICK

Rome, 23/2/17
Partly joint work with J. Haslegrave
Disclaimer: The topic of this talk has nothing to do with the location

How Mafia's grow

A network evolves in (continuous or discrete) time with the following rules:

- When a (Poisson) clock ticks, nodes split into two;
- When a node x splits into two nodes $x^{\prime}, x^{\prime \prime}$, each of its existing edges gets inherited by x^{\prime} or $x^{\prime \prime}$ independently with probability $1 / 2$;
- Moreover, a Poisson(k)-distributed number of new edges are added between x^{\prime} and $x^{\prime \prime}$.

How Mafia's grow

A network evolves in (continuous or discrete) time with the following rules:

- When a (Poisson) clock ticks, nodes split into two;
- When a node x splits into two nodes $x^{\prime}, x^{\prime \prime}$, each of its existing edges gets inherited by x^{\prime} or $x^{\prime \prime}$ independently with probability $1 / 2$;
- Moreover, a Poisson(k)-distributed number of new edges are added between x^{\prime} and $x^{\prime \prime}$.

As time goes to infinity, the distribution of the component (mafia) of a designated vertex converges.

How Mafia's grow

A network evolves in (continuous or discrete) time with the following rules:

- When a (Poisson) clock ticks, nodes split into two;
- When a node x splits into two nodes $x^{\prime}, x^{\prime \prime}$, each of its existing edges gets inherited by x^{\prime} or $x^{\prime \prime}$ independently with probability $1 / 2$;
- Moreover, a Poisson(k)-distributed number of new edges are added between x^{\prime} and $x^{\prime \prime}$.

As time goes to infinity, the distribution of the component (mafia) of a designated vertex converges.

Is the component in the limit distribution finite or infinite?

How Mafia's grow

A network evolves in (continuous or discrete) time with the following rules:

- When a (Poisson) clock ticks, nodes split into two;
- When a node x splits into two nodes $x^{\prime}, x^{\prime \prime}$, each of its existing edges gets inherited by x^{\prime} or $x^{\prime \prime}$ independently with probability $1 / 2$;
- Moreover, a Poisson(k)-distributed number of new edges are added between x^{\prime} and $x^{\prime \prime}$.

As time goes to infinity, the distribution of the component (mafia) of a designated vertex converges.

Is the component in the limit distribution finite or infinite? If it is finite, is its expected size finite or infinite?

How Mafia's grow

A network evolves in (continuous or discrete) time with the following rules:

- When a (Poisson) clock ticks, nodes split into two;
- When a node x splits into two nodes $x^{\prime}, x^{\prime \prime}$, each of its existing edges gets inherited by x^{\prime} or $x^{\prime \prime}$ independently with probability $1 / 2$;
- Moreover, a Poisson(k)-distributed number of new edges are added between x^{\prime} and $x^{\prime \prime}$.

As time goes to infinity, the distribution of the component (mafia) of a designated vertex converges.

Is the component in the limit distribution finite or infinite?
If it is finite, is its expected size finite or infinite?
If finite, how does it depend on k ?

Random Graphs

1396 papers on MathSciNet with "random graph" in their title

Random Graphs

1396 papers on MathSciNet with "random graph" in their title
... most of which on the Erdős-Renyi model $G(n, p)$:

Random Graphs

1396 papers on MathSciNet with "random graph" in their title
... most of which on the Erdős-Renyi model $G(n, p)$:

- n vertices
- each pair joined with an edge, independently, with same probability $p=p(n)$.

Random Graphs

1396 papers on MathSciNet with "random graph" in their title
... most of which on the Erdős-Renyi model $G(n, p)$:

- n vertices
- each pair joined with an edge, independently, with same probability $p=p(n)$.

Real-world networks?

- Preferential attachment networks
- Geometric random graphs

Geometric Random Graphs Literature

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture Notes, 2013.]
[Mathew Penrose. Random Geometric Graphs. Oxford University Press, 2003.]

Geometric Random Graphs Literature

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture Notes, 2013.]
[Mathew Penrose. Random Geometric Graphs. Oxford University Press, 2003.]

Random planar graphs ...

Geometric Random Graphs Literature

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture Notes, 2013.]
[Mathew Penrose. Random Geometric Graphs. Oxford University Press, 2003.]

Random planar graphs ...
Percolation theory ...

Random Graphs from trees

Agelos Georgakopoulos

Random Graphs from trees

Simulations by C. Moniz.

Random Graphs from trees

Simulations by C. Moniz.

Agelos Georgakopoulos

A nice property

Agelos Georgakopoulos

A nice property

Proposition

$\mathbb{E}\left(\#\right.$ edges $x y$ in R_{n} with x in X and y in Y)

converges.

A nice property

Proposition

$\mathbb{E}\left(\#\right.$ edges $x y$ in R_{n}
with x in X and y in Y)

converges.

A nice property

Proposition

$\mathbb{E}\left(\#\right.$ edges $x y$ in R_{n}
with x in X and y in Y)

converges.

?

Agelos Georgakopoulos

A nice property

Proposition

For every two measurable subsets X, Y of the Poisson (or Martin) boundary ∂G,
$\mathbb{E}\left(\#\right.$ edges $x y$ in R_{n} with x 'close to' X and y 'close to' Y)
converges.

A nice property

Proposition

For every two measurable subsets X, Y of the Poisson (or Martin) boundary ∂G,
$\mathbb{E}\left(\#\right.$ edges $x y$ in R_{n} with x 'close to' X and y 'close to' Y)

converges.

We use the limit to define a measure on $\partial G \times \partial G$ via

$$
C(X, Y):=\lim \mathbb{E}(\# \text { edges } \ldots)
$$

Energy and Douglas' formula

The classical Douglas formula [Douglas '31]

$$
E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(\zeta, \eta) d \eta d \zeta
$$

calculates the (Dirichlet) energy of a harmonic function h on \mathbb{D} from its boundary values \hat{h} on the circle $\partial \mathbb{D}$.

Energy in finite electrical networks

$E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C_{a b}$,

Energy in finite electrical networks

$E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C_{a b}$,
Compare with Douglas: $E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(\zeta, \eta) d \eta d \zeta$

Energy in finite electrical networks

$$
E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C_{a b},
$$

Compare with Douglas: $E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(\zeta, \eta) d \eta d \zeta$
How can we generalise this to an arbitrary domain?

Energy in finite electrical networks

$$
E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C_{a b},
$$

Compare with Douglas: $E(h)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(\hat{h}(\eta)-\hat{h}(\zeta))^{2} \Theta(\zeta, \eta) d \eta d \zeta$
How can we generalise this to an arbitrary domain? To an infinite graph?

Effective conductance

We call C the effective conductance measure, because

Theorem (G \& V. Kaimanovich '12-'17+)

For every locally finite network G, and every harmonic function h, we have

$$
E(h)=\int_{\partial G \times \partial G}(\widehat{h}(\eta)-\widehat{h}(\zeta))^{2} d C(\eta, \zeta) .
$$

History: Douglas '31, Naim '57, Doob '62, Silverstein '74
Finite version: $E(h)=\sum_{a, b \in B}(h(a)-h(b))^{2} C_{a b}$

Random Interlacements and C

Random Interlacements I [Sznitman]:

Random Interlacements and C

Random Interlacements \mathcal{I} [Sznitman]:

- A Poisson point process whose 'points' are 2-way infinite trajectories

Random Interlacements and C

Random Interlacements \mathcal{I} [Sznitman]:

- A Poisson point process whose 'points' are 2-way infinite trajectories
- governed by a certain σ-finite measure v

Random Interlacements and C

Random Interlacements I [Sznitman]:

- A Poisson point process whose 'points' are 2-way infinite trajectories
- governed by a certain σ-finite measure v
- obtained as the limit of random walk trajectories in an $n \times n$ window in a discrete torus.

Random Interlacements and C

Random Interlacements I [Sznitman]:

- A Poisson point process whose 'points' are 2-way infinite trajectories
- governed by a certain σ-finite measure v
- obtained as the limit of random walk trajectories in an $n \times n$ window in a discrete torus.

Theorem (G \& Kaimanovich '17+)
For every transient, locally finite graph G,

$$
C(X, Y)=v\left(1_{X Y} W^{*}\right)
$$

Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman \& Schulman, Aizenman \& Newman '86)

In long range percolation on \mathbb{Z}, with edge rates $\lambda /|x-y|^{s}$, percolation occurs for large enough λ if $s \leq 2$.

Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman \& Schulman, Aizenman \& Newman '86)

In long range percolation on \mathbb{Z}, with edge rates $\lambda /|x-y|^{s}$, percolation occurs for large enough λ if $s \leq 2$.
$R_{n}^{\lambda}\left(\mathbb{Z}^{2}\right)$ converges (a la Benjamini-Schramm) to an instance R_{∞}^{λ} of this (with $s=2$) as $n \rightarrow \infty$.

Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman \& Schulman, Aizenman \& Newman '86)

In long range percolation on \mathbb{Z}, with edge rates $\lambda /|x-y|^{s}$, percolation occurs for large enough λ if $s \leq 2$.
$R_{n}^{\lambda}\left(\mathbb{Z}^{2}\right)$ converges (a la Benjamini-Schramm) to an instance R_{∞}^{λ} of this (with $s=2$) as $n \rightarrow \infty$.
But R_{∞}^{λ} (Tree) does not percolate for any λ !

Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman \& Schulman, Aizenman \& Newman '86)

In long range percolation on \mathbb{Z}, with edge rates $\lambda /|x-y|^{s}$, percolation occurs for large enough λ if $s \leq 2$.
$R_{n}^{\lambda}\left(\mathbb{Z}^{2}\right)$ converges (a la Benjamini-Schramm) to an instance R_{∞}^{λ} of this (with $s=2$) as $n \rightarrow \infty$.
But R_{∞}^{λ} (Tree) does not percolate for any $\lambda!$

$$
\text { How large is } R_{\infty}^{\lambda}(T) ?
$$

The expected size of the TWRG

Let C_{o}^{λ} denote the component of a uniformly random vertex of $R_{n}^{\lambda}(T)\left(\operatorname{or} R_{\infty}^{\lambda}(T)\right)$.

Theorem (G \& Haslegrave, state of the art 2/17)

$$
e^{\lambda} \leq \mathbb{E}\left(\left|C_{o}^{\lambda}\right|\right) \leq e^{e^{b \lambda}}
$$

The expected size of the TWRG

Let C_{o}^{λ} denote the component of a uniformly random vertex of $R_{n}^{\lambda}(T)\left(\operatorname{or} R_{\infty}^{\lambda}(T)\right)$.

Theorem (G \& Haslegrave, state of the art 2/17)

$$
e^{\lambda} \leq \mathbb{E}\left(\left|C_{0}^{\lambda}\right|\right) \leq e^{e^{b \lambda}}
$$

Conjecture:

$$
\mathbb{E}\left(\left|C_{o}^{\lambda}\right|\right) \sim \lambda^{\lambda}
$$

(backed by simulations)

Outlook

Outlook

- Interplay between the host group Γ and its GWRGs

Outlook

- Interplay between the host group Γ and its GWRGs
- Let Γ act on C and see what happens

Outlook

- Interplay between the host group Γ and its GWRGs
- Let Γ act on C and see what happens

Outlook

- Interplay between the host group Γ and its GWRGs
- Let Γ act on C and see what happens

Thank you!

European Reseanch Council
erc
Supporting top researchers
from anywhere in the world

These slides are on-line.

