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?

How do you
define an

infinite cycle?
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Finite cycles not enough!

Things that go wrong if you only allow finite cycles:

Tutte’s theorem that the peripheral cycles of a 3-connected
graph generate all cycles
Thomassen’s theorem that every (k + 3)-connected graph
contains a cycle C such that G − C is k -connected
Hamilton cycles?
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Tutte’s Theorem

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

Theorem (Yu ’05)
Every locally finite 4-connected planar
graph with at most 2 ends has a spanning
double ray
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Ends

end: equivalence class of rays
two rays are equivalent if no finite vertex set separates them

......

two ends

one end

... ... ... ...... ... ... ...

2ω many ends
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The Freudenthal compactification

Circle (Diestel & Kühn):
A homeomorphic image of S1 in |G|.

Agelos Georgakopoulos Infinite Cycles



Introduction Spanning Double-Rays Topological cycles The Cycle Space Open Problems

The Freudenthal compactification

Circle (Diestel & Kühn):
A homeomorphic image of S1 in |G|.

Agelos Georgakopoulos Infinite Cycles



Introduction Spanning Double-Rays Topological cycles The Cycle Space Open Problems

Infinite cycles

Circle:
A homeomorphic image of S1 in |G|.

Agelos Georgakopoulos Infinite Cycles



Introduction Spanning Double-Rays Topological cycles The Cycle Space Open Problems

l-TOP

An equivalent definition of |G|:

Assign a length `(e) > 0 to each edge e;

This induces a metric d`(v , x);
Let `-TOP(G) be the completion of (G, d`).

Proposition (G)

If
∑

e∈E(G) `(e) < ∞ then `-TOP(G) ≈ |G|.
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Infinite cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices.
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Fleischner’s Theorem

Theorem (Fleischner ’74)
The square of a finite 2-connected graph has a
Hamilton cycle

Theorem (Thomassen ’78)
The square of a locally finite 2-connected 1-ended
graph has a spanning double ray.
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Fleischner’s Theorem for Locally Finite Graphs

Theorem (G ’06)
The square of a locally finite 2-connected
graph has a Hamilton circle
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Cycle Space

The cycle space C(G) of a finite graph:
A vector space over Z2

Consists of all sums of circuits

The topological cycle space C(G) of a locally finite graph G is
defined similarly but:

Allows edge sets of infinite circles;
Allows infinite sums (whenever well-defined).
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The topological Cycle Space

Known facts:
A connected graph has an Euler tour iff
every edge-cut is even (Euler)
G is planar iff C(G) has a simple
generating set (MacLane)
If G is 3-connected then its peripheral
circuits generate C(G) (Tutte)

Generalisations:

Bruhn & Stein

Bruhn

Bruhn & Stein
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Failure in “continuous” problems

Theorem
The geodetic cycles of a finite graph G generate its cycle
space.

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph generate C(G)

... provided the edges are assigned lengths ` that respect |G|,
i.e. `-TOP(G) ≈ |G|.
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Infinite electrical networks

Similarly:

Theorem
In a locally finite electrical network the infinite circles satisfy
Kirchhoff’s 2nd law if `-TOP(G) ≈ |G|, where `(e) is the
resistance of e.

Even stronger:

Theorem (G)

In a locally finite electrical network with resistances `(e), all
“proper” circles in `-TOP(G) satisfy Kirchhoff’s 2nd law.
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Geodetic circles

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph G generate C(G)

... provided the edges are assigned lengths ` that respect |G|,
i.e. `-TOP(G) ≈ |G|.
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Open problems

Conjecture
Every locally finite 4-connected line graph has a Hamilton circle.
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Hamiltonicity in Cayley graphs

Problem
Does every finite Cayley graph have a Hamilton cycle?

Problem
Does every 1-ended Cayley graph have a Hamilton circle
(i.e. a spanning double ray)?

Problem
Prove that a Cayley graph of a finitely generated group Γ has a
Hamilton circle unless Γ is the amalgamated product of more
than k groups over a subgroup of order k.
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Open Problems

Theorem (Thomassen)

Every finite (k + 3)-connected graph contains a cycle C such
that G − C is k-connected.

Problem (Diestel)

If G is a locally finite (k + 3)-connected graph, does |G| contain
a circle C such that G − C is k-connected or |G| − C is
topologically k-connected?
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