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Random Graphs flashback

1396 papers on MathSciNet with "random graph" in their title

... most of which on the Erdős-Renyi model G(n,p):

• n vertices
• each pair joined with an edge, independently, with same

probability p = p(n).
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Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title.

1. [Gilbert, E. N. Random graphs. Ann. Math. Statist. 30 1959]
=> determines the probability that the graph is connected.

...

10. [Palásti, I. On the connectedness of random graphs.
Studies in Math. Stat.: Theory & Applications. 1968]
=> gives a short summary of some previously published

results concerning the connectedness of random graphs.

...
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Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title.
...

100. [Bollobás, B. Long paths in sparse random graphs.
Combinatorica. 1982]
=> shows that if p = c/n, then almost every graph in G(n,p)

contains a path of length at least (1 − a(c))n, where a(c) is an
exponentially decreasing function of c.
...

1000. [Doku-Amponsah, K.; Mörters, P. Large deviation
principles for empirical measures of colored random graphs.
Ann. Appl. Probab. 2010]
=> derives large deviation principles for the empirical

neighbourhood measure of colored random graphs, defined as
the number of vertices of a given colour with a given number of
adjacent vertices of each colour. . . .
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Random Graphs from trees
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Random Graphs from trees

Simulation on the binary tree by A. Janse van Rensburg.
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A nice property

Proposition

E(] edges xy in Gn(T )

with x in X and y in Y )

converges.
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5 Results

One set Two sets Three sets

Cycled Binary Tree

2Grid

3Grid

Lamplighter

Figure 4: Random graphs generated for various host graphs. Note the di↵erence in number
of components, isolated vertices, and component diameter.

Using the k-balls of the graphs in the preceding section (with boundaries as stated), we

construct the random graphs R
k

(G
k

, B). For all host graphs chosen, the probability that

there was at least one isolated vertex (which implies that the graph was disconnected)

tended to 1 as k !1. We examine several properties of the resulting random graphs:

• Number of isolated vertices

• Number of components

• Value: size of largest component / size of smallest component

• Diameter of largest connected component

For certain graphs, we also run random walks until the generated graph R
k

is connected.

In what follows, 10,000 random graphs were generated for each k-value, and an average

was taken.

18

Simulations
by C.

Midgley.
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Problems

Problem 1: The (expected) number of connected components
(or isolated vertices) is asymptotically proportional to |Bn|.

Problem 2: The threshold (# of rounds) for connectedness
coincides with the threshold for no isolated vertices.

Problem 3: The expected diameter of the largest component is
asymptotically c log |Bn|.

Backed by simulations by C. Midgley.
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What’s the point?

Metaproblem 1: Which properties of the random graphs are
determined by the group of the host graph H and do not
depend on the choice of a generating set?

Metaproblem 2: Which group-theoretic properties of the host
group are reflected in graph-theoretic properties of the random
graphs?
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Energy and Douglas’ formula

The classical Douglas formula

E(h) =
∫ 2π

0

∫ 2π

0
(ĥ(η) − ĥ(ζ))2Θ(ζ, η)dηdζ

calculates the (Dirichlet) energy of a
harmonic function h on D from its
boundary values ĥ on the circle ∂D.

Agelos Georgakopoulos



Energy in finite electrical networks

a

b

a

b

Cab

E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab,

Compare with Douglas: E(h) =
∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(ζ, η)dηdζ

How can we generalise this to an arbitrary domain?
To an infinite graph?
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The Poisson integral representation formula

The classical Poisson formula

h(z) =
∫ 1

0
ĥ(θ)P(z, θ)dθ

=

∫ 1

0
ĥ(θ)dνz(θ)

where P(z, θ) := 1−|z |2

|e2πiθ−z |2 ,
recovers every continuous harmonic
function h on D from its boundary
values ĥ on the circle ∂D.
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The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a (Lebesgue-Rohlin) measurable space (PG,Σ), and

- a family of probability measures {νz , z ∈ VG},
such that

every bounded harmonic function h can be obtained by

h(z) =
∫
PG

ĥ(η)dνz(η)

this ĥ ∈ L∞(PG) is unique up to modification on a null-set;
conversely, for every ĥ ∈ L∞(PG) the function
z 7→

∫
PG

ĥ(η)dνz(η) is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry
between the Banach spaces H∞(G) and L∞(PG).
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ĥ(η)dνz(η)

this ĥ ∈ L∞(PG) is unique up to modification on a null-set;

conversely, for every ĥ ∈ L∞(PG) the function
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The Poisson-Furstenberg boundary

Selected work on the Poisson boundary

Introduced by Furstenberg to study semi-simple
Lie groups [Annals of Math. ’63]
Kaimanovich & Vershik give a general criterion using the
entropy of random walk [Annals of Probability ’83]
Kaimanovich identifies the Poisson boundary of hyperbolic
groups, and gives general criteria [Annals of Math. ’00]
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Energy in finite electrical networks

a

b

a

b

Cab

E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab,

Compare with Douglas: E(h) =
∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(ζ, η)dηdζ

[Doob ’62] generalises this to Green spaces (or Riemannian
manifolds) using their Martin boundary.
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The energy of harmonic functions

Theorem (G & Kaimanovich ’15+)
For every locally finite network G, there is a measure C on
P2(G) such that for every harmonic function h, we have

E(h) =
∫
P2

(̂
h(η) − ĥ(ζ)

)2
dC(η, ζ).

... similarly to Douglas’ formula
E(h) =

∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(ζ, η)dηdζ

What is this measure C?
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What is this measure C?

E(h) =
∫
P2

(̂
h(η) − ĥ(ζ)

)2
dC(η, ζ).

C(X ,Y ) := lim
n
E(] edges xy in Gn(H)

with x ‘close to’ X ,
and y ‘close to’ Y )
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The energy of harmonic functions

Theorem (G & V. Kaimanovich ’15+)
For every locally finite network G, there is a measure C on
P2(G) such that for every harmonic function u, we have

E(h) =
∫
P2

(̂
h(η) − ĥ(ζ)

)2
dC(η, ζ).
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The Naim Kernel

Doob’s formula:

E(h) = q
∫
M2

(ĥ(η) − ĥ(ζ))2Θ(ζ, η)dµoηdµoζ,

for h fine-continuous quasi-everywhere [Doob ’63].

where the Naim Kernel Θ is defined as

Θ(ζ, η) :=
1

G(o,o)
lim

zn→ζ,yn→η

F (zn, yn)
F (zn,o)F (o, yn)

... in the fine topology [Naim ’57].

Remark:
1

Θ(z, y )
= G(o,o) Pr

z
(o < y | y ),

where Prz(o < y |y ) is the conditional probability to visit o before
y subject to visiting y .
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Convergence of the Naim Kernel

Θ(ζ, η) :=
1

G(o,o)
lim

zn→ζ,yn→η

F (zn, yn)
F (zn,o)F (o, yn)

Problem: Let (zi )i∈N and (wi )i∈N be independent simple random
walks from o. Then limn,m→∞Θ(zn,wm) exists almost surely.
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Random Interlacements and C

Random Interlacements I [Sznitman]:

• A Poisson point process whose ‘points’ are 2-way infinite
trajectories

• applied to study the vacanct set on the discrete 3D-torus
• governed by a certain σ-finite measure ν

Theorem (G & Kaimanovich ’15+)
For every transient, locally finite graph G,

C(X ,Y ) = ν(1XY W ∗).
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Long range percolation

(Joint work in progress with O. Angel, G. Ray,
and with J. Haslegrave)

Theorem (Newman & Schulman, Aizenman & Newman ’86)

In long range percolation on Z, with parameters e−β/|x−y |s ,
percolation occurs for large enough β if s ≤ 2.

The GWRG Rβn on Z2 converges to an instance Rβ∞ of this (with
s = 2) as n → ∞.

But the GWRG Rβn on a tree does not percolate for any β!
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Summary

The effective conductance measure C,
The Naim kernel Θ,
Random Interlacements I,
Long range percolation,
and Group Walk Random Graphs Gn(H)

are closely related.

Can we use the one to study the other?

Can we use them to study groups?

Thank you!
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