Group Walk Random Graphs

Agelos Georgakopoulos

THE UNIVERSITY OF WARWICK

15/10/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Agelos Georgakopoulos

Random Graphs flashback

1396 papers on MathSciNet with "random graph" in their title

1396 papers on MathSciNet with "random graph" in their title

... most of which on the Erdős-Renyi model G(n, p):

《曰》《聞》《臣》《臣》

1396 papers on MathSciNet with "random graph" in their title

... most of which on the Erdős-Renyi model G(n, p):

• n vertices

• each pair joined with an edge, independently, with same probability p = p(n).

Random Graphs flashback

:

1269 papers on MathSciNet with "random graph" in their title.

1. [Gilbert, E. N. Random graphs. Ann. Math. Statist. 30 1959] => determines the probability that the graph is connected. 1269 papers on MathSciNet with "random graph" in their title.

1. [Gilbert, E. N. Random graphs. Ann. Math. Statist. 30 1959] => determines the probability that the graph is connected.

10. [Palásti, I. On the connectedness of random graphs. Studies in Math. Stat.: Theory & Applications. 1968]

=> gives a short summary of some previously published results concerning the connectedness of random graphs.

.

•

1269 papers on MathSciNet with "random graph" in their title.

100. [Bollobás, B. Long paths in sparse random graphs. Combinatorica. 1982]

=> shows that if p = c/n, then almost every graph in G(n, p) contains a path of length at least (1 - a(c))n, where a(c) is an exponentially decreasing function of c.

.

1269 papers on MathSciNet with "random graph" in their title.

100. [Bollobás, B. Long paths in sparse random graphs. Combinatorica. 1982]

=> shows that if p = c/n, then almost every graph in G(n, p) contains a path of length at least (1 - a(c))n, where a(c) is an exponentially decreasing function of c.

1000. [Doku-Amponsah, K.; Mörters, P. Large deviation principles for empirical measures of colored random graphs. Ann. Appl. Probab. 2010]

=> derives large deviation principles for the empirical neighbourhood measure of colored random graphs, defined as the number of vertices of a given colour with a given number of adjacent vertices of each colour. ...

Random Graphs from trees

Agelos Georgakopoulos

Random Graphs from trees

< 17 ▶

Simulation on the binary tree by A. Janse van Rensburg.

Agelos Georgakopoulos

Agelos Georgakopoulos

< □ > < □ > < □ > < Ξ > < Ξ > ...

æ

Agelos Georgakopoulos

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Proposition

 $\mathbb{E}(\# edges xy in \mathcal{G}_n(T)$ with x in X and y in Y)

・ロン ・聞と ・ ヨン・

3

converges.

Proposition

 $\mathbb{E}(\# edges xy in \mathcal{G}_n(T))$ with x in X and y in Y)

<ロ> <同> <同> <同> <同> <同> <同> <同> <

converges.

Proposition

 $\mathbb{E}(\# edges xy in \mathcal{G}_n(T)$ with x in X and y in Y)

·문▶ ★ 문▶ · · 문

converges.

Agelos Georgakopoulos

Problem 1: The (expected) number of connected components (or isolated vertices) is asymptotically proportional to $|B_n|$.

Problem 2: The threshold (# of rounds) for connectedness coincides with the threshold for no isolated vertices.

Problem 3: The expected diameter of the largest component is asymptotically $c \log |B_n|$.

Backed by simulations by C. Midgley.

Metaproblem 1: Which properties of the random graphs are determined by the group of the host graph *H* and do not depend on the choice of a generating set?

イロト イ押ト イヨト イヨト

Metaproblem 1: Which properties of the random graphs are determined by the group of the host graph *H* and do not depend on the choice of a generating set?

Metaproblem 2: Which group-theoretic properties of the host group are reflected in graph-theoretic properties of the random graphs?

イロト イ押ト イヨト イヨト

The classical Douglas formula

$$E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$$

calculates the (Dirichlet) energy of a harmonic function h on \mathbb{D} from its boundary values \hat{h} on the circle $\partial \mathbb{D}$.

$$E(h) = \sum_{a,b\in B} (h(a) - h(b))^2 C_{ab},$$

æ

イロト イポト イヨト イヨト

Agelos Georgakopoulos

$$E(h) = \sum_{a,b\in B} (h(a) - h(b))^2 C_{ab},$$

Compare with Douglas: $E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$

・ロト ・回ト ・ヨト ・ヨトー

$$E(h) = \sum_{a,b\in B} \left(h(a) - h(b)\right)^2 C_{ab},$$

Compare with Douglas: $E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$

How can we generalise this to an arbitrary domain?

イロト イヨト イヨト イ

$$E(h) = \sum_{a,b\in B} \left(h(a) - h(b)\right)^2 C_{ab},$$

Compare with Douglas: $E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$

How can we generalise this to an arbitrary domain? To an infinite graph?

イロト イポト イヨト イヨ

The classical Poisson formula

$$h(z) = \int_0^1 \hat{h}(\theta) P(z,\theta) d\theta$$

where $P(z, \theta) := \frac{1-|z|^2}{|e^{2\pi i \theta} - z|^2}$, recovers every continuous harmonic function *h* on \mathbb{D} from its boundary values \hat{h} on the circle $\partial \mathbb{D}$. The classical Poisson formula

$$h(z) = \int_0^1 \hat{h}(\theta) P(z,\theta) d\theta = \int_0^1 \hat{h}(\theta) d\nu_z(\theta)$$

where $P(z, \theta) := \frac{1-|z|^2}{|e^{2\pi i \theta} - z|^2}$, recovers every continuous harmonic function *h* on \mathbb{D} from its boundary values \hat{h} on the circle $\partial \mathbb{D}$.

The Poisson boundary of an (infinite) graph *G* consists of - a (Lebesgue-Rohlin) measurable space (\mathcal{P}_G, Σ), and

The Poisson boundary of an (infinite) graph *G* consists of

- a (Lebesgue-Rohlin) measurable space (\mathcal{P}_{G}, Σ), and

イロン イボン イヨン

- a family of probability measures $\{v_z, z \in V_G\}$,

such that

The Poisson boundary of an (infinite) graph *G* consists of

- a (Lebesgue-Rohlin) measurable space (\mathcal{P}_{G}, Σ), and
- a family of probability measures $\{v_z, z \in V_G\}$,

such that

• every bounded harmonic function *h* can be obtained by

$$h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$$

< □ > < 同 > < 三 > <

The Poisson boundary of an (infinite) graph *G* consists of

- a (Lebesgue-Rohlin) measurable space (\mathcal{P}_{G}, Σ), and
- a family of probability measures $\{v_z, z \in V_G\}$,

such that

• every bounded harmonic function *h* can be obtained by

$$h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$$

(4回) (日) (日)

• this $\hat{h} \in L^{\infty}(\mathcal{P}_G)$ is unique up to modification on a null-set;

The Poisson boundary of an (infinite) graph *G* consists of

- a (Lebesgue-Rohlin) measurable space (\mathcal{P}_{G}, Σ), and
- a family of probability measures $\{v_z, z \in V_G\}$,

such that

• every bounded harmonic function *h* can be obtained by

$$h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) dv_z(\eta)$$

- this $\hat{h} \in L^{\infty}(\mathcal{P}_G)$ is unique up to modification on a null-set;
- conversely, for every $\hat{h} \in L^{\infty}(\mathcal{P}_G)$ the function $z \mapsto \int_{\mathcal{P}_G} \hat{h}(\eta) dv_z(\eta)$ is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry between the Banach spaces $H^{\infty}(G)$ and $L^{\infty}(\mathcal{P}_G)$.

Selected work on the Poisson boundary

- Introduced by Furstenberg to study semi-simple Lie groups [Annals of Math. '63]
- Kaimanovich & Vershik give a general criterion using the entropy of random walk [*Annals of Probability '83*]
- Kaimanovich identifies the Poisson boundary of hyperbolic groups, and gives general criteria [*Annals of Math. '00*]

イロト イポト イヨト イヨト 三油

$$E(h) = \sum_{a,b\in B} \left(h(a) - h(b)\right)^2 C_{ab},$$

Compare with Douglas: $E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$

・ロト ・回 ト ・ ヨト ・ ヨトー

$$E(h) = \sum_{a,b\in B} \left(h(a) - h(b)\right)^2 C_{ab},$$

Compare with Douglas: $E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$

[*Doob '62*] generalises this to Green spaces (or Riemannian manifolds) using their *Martin boundary*.

Theorem (G & Kaimanovich '15+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function h, we have

$$\mathsf{E}(h) = \int_{\mathcal{P}^2} \left(\widehat{h}(\eta) - \widehat{h}(\zeta)\right)^2 \mathsf{d} C(\eta, \zeta).$$

< ロ > < 同 > < 三 > .

Theorem (G & Kaimanovich '15+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function h, we have

$$\mathsf{E}(h) = \int_{\mathcal{P}^2} \left(\widehat{h}(\eta) - \widehat{h}(\zeta)\right)^2 \mathsf{d} C(\eta, \zeta).$$

< ロ > < 同 > < 三 > .

... similarly to Douglas' formula

$$E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$$

Theorem (G & Kaimanovich '15+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function h, we have

$$\mathsf{E}(h) = \int_{\mathcal{P}^2} \left(\widehat{h}(\eta) - \widehat{h}(\zeta)\right)^2 \mathsf{d} C(\eta, \zeta).$$

... similarly to Douglas' formula

$$E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta$$

What is this measure C?

< ロ > < 同 > < 三 >

What is this measure *C*?

$$E(h) = \int_{\mathcal{P}^2} \left(\widehat{h}(\eta) - \widehat{h}(\zeta)\right)^2 dC(\eta, \zeta).$$

イロト (四) (日) (日)

2

Agelos Georgakopoulos

What is this measure *C*?

$$E(h) = \int_{\mathcal{P}^2} \left(\widehat{h}(\eta) - \widehat{h}(\zeta)\right)^2 dC(\eta, \zeta).$$

 $C(X, Y) := \lim_{n} \mathbb{E}(\sharp \text{ edges } xy \text{ in } \mathcal{G}_{n}(H)$ with x 'close to' X, and y 'close to' Y)

A D > A P > A

3

≣ ▶

Theorem (G & V. Kaimanovich '15+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function u, we have $E(h) = \int_{\mathcal{P}^2} \left(\widehat{h}(\eta) - \widehat{h}(\zeta)\right)^2 dC(\eta, \zeta).$

イロト イポト イヨト イヨト 一座

Doob's formula:

$$E(h) = q \int_{\mathcal{M}^2} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\mu_0 \eta \, d\mu_0 \zeta,$$

Agelos Georgakopoulos

Doob's formula:

$$E(h) = q \int_{\mathcal{M}^2} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\mu_0 \eta \, d\mu_0 \zeta,$$

イロト イポト イヨト イヨト

for *h* fine-continuous quasi-everywhere [Doob '63].

Agelos Georgakopoulos

Doob's formula:

$$E(h) = q \int_{\mathcal{M}^2} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\mu_0 \eta \, d\mu_0 \zeta,$$

for h fine-continuous quasi-everywhere [Doob '63].

where the **Naim Kernel** Θ is defined as

$$\Theta(\zeta,\eta) := \frac{1}{G(o,o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)}$$

イロト イポト イヨト イヨト

Doob's formula:

$$E(h) = q \int_{\mathcal{M}^2} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\mu_0 \eta \, d\mu_0 \zeta,$$

for *h* fine-continuous quasi-everywhere [Doob '63].

where the **Naim Kernel** Θ is defined as

$$\Theta(\zeta,\eta) := \frac{1}{G(o,o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)}$$

イロン イボン イヨン イヨン

... in the fine topology [Naim '57].

Doob's formula:

$$E(h) = q \int_{\mathcal{M}^2} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\mu_0 \eta \, d\mu_0 \zeta,$$

for *h* fine-continuous quasi-everywhere [Doob '63].

where the Naim Kernel Θ is defined as

$$\Theta(\zeta,\eta) := \frac{1}{G(o,o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)}$$

... in the fine topology [Naim '57].

Remark:

$$\frac{1}{\Theta(z, y)} = G(o, o) \Pr_{z}(o < y \mid y),$$

where $\Pr_z(o < y|y)$ is the conditional probability to visit *o* before *y* subject to visiting *y*.

Convergence of the Naim Kernel

$$\Theta(\zeta,\eta) := \frac{1}{G(o,o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)}$$

Agelos Georgakopoulos

$$\Theta(\zeta,\eta) := \frac{1}{G(o,o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)}$$

Problem: Let $(z_i)_{i \in \mathbb{N}}$ and $(w_i)_{i \in \mathbb{N}}$ be independent simple random walks from *o*. Then $\lim_{n,m\to\infty} \Theta(z_n, w_m)$ exists almost surely.

Agelos Georgakopoulos

• A Poisson point process whose 'points' are 2-way infinite trajectories

イロト イポト イヨト イヨト

A Poisson point process whose 'points' are 2-way infinite trajectories

• applied to study the vacanct set on the discrete 3D-torus

• A Poisson point process whose 'points' are 2-way infinite trajectories

- applied to study the vacanct set on the discrete 3D-torus
- governed by a certain σ -finite measure ν

• A Poisson point process whose 'points' are 2-way infinite trajectories

applied to study the vacanct set on the discrete 3D-torus

ヘロト ヘ回ト ヘヨト ヘヨト

• governed by a certain σ -finite measure ν

Theorem (G & Kaimanovich '15+)

For every transient, locally finite graph G, $C(X, Y) = v(1_{XY}W^*).$

Agelos Georgakopoulos

Agelos Georgakopoulos

イロン イボン イヨン

Theorem (Newman & Schulman, Aizenman & Newman '86)

ヘロト ヘアト ヘビト ヘビト

In long range percolation on \mathbb{Z} , with parameters $e^{-\beta/|x-y|^s}$, percolation occurs for large enough β if $s \leq 2$.

Agelos Georgakopoulos

Theorem (Newman & Schulman, Aizenman & Newman '86)

In long range percolation on \mathbb{Z} , with parameters $e^{-\beta/|x-y|^s}$, percolation occurs for large enough β if $s \leq 2$.

The GWRG R_n^{β} on \mathbb{Z}^2 converges to an instance R_{∞}^{β} of this (with s = 2) as $n \to \infty$.

イロト イポト イヨト イヨト

Theorem (Newman & Schulman, Aizenman & Newman '86)

In long range percolation on \mathbb{Z} , with parameters $e^{-\beta/|x-y|^s}$, percolation occurs for large enough β if $s \leq 2$.

The GWRG R_n^{β} on \mathbb{Z}^2 converges to an instance R_{∞}^{β} of this (with s = 2) as $n \to \infty$.

イロト イポト イヨト イヨト

But the GWRG R_n^{β} on a tree does not percolate for any β !

The effective conductance measure C, The Naim kernel Θ , Random Interlacements I, Long range percolation, and Group Walk Random Graphs $\mathcal{G}_n(H)$

イロン イボン イヨン

The effective conductance measure C, The Naim kernel Θ , Random Interlacements I, Long range percolation, and Group Walk Random Graphs $\mathcal{G}_n(H)$

are closely related.

イロン イボン イヨン

The effective conductance measure C, The Naim kernel Θ , Random Interlacements I, Long range percolation, and Group Walk Random Graphs $\mathcal{G}_n(H)$

are closely related.

Can we use the one to study the other?

ヘロト ヘアト ヘビト ヘビト

The effective conductance measure C, The Naim kernel Θ , Random Interlacements I, Long range percolation, and Group Walk Random Graphs $\mathcal{G}_n(H)$

are closely related.

Can we use the one to study the other?

Can we use them to study groups?

くロト (過) (目) (日)

The effective conductance measure C, The Naim kernel Θ , Random Interlacements I, Long range percolation, and Group Walk Random Graphs $\mathcal{G}_n(H)$

are closely related.

Can we use the one to study the other?

Can we use them to study groups?

