Fleischner's Theorem for Infinite Graphs

Angelos Georgakopoulos

Methematisches Seminar der Universität Hamburg

Angelos Georgakopoulos Fleischner's Theorem for Infinite Graphs

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected 2-indivisible graph has a spanning double ray

Double Rays

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

Theorem (Yu '05)

Every locally finite 4-connected planar 3-indivisible graph has a spanning double ray

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Angelos Georgakopoulos

Fleischner's Theorem for Infinite Graphs

end: equivalence class of rays

two rays are equivalent if no finite vertex set separates them

Angelos Georgakopoulos

Fleischner's Theorem for Infinite Graphs

The Freudenthal Compactification

Angelos Georgakopoulos Fleischner's Theorem for Infinite Graphs

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

The Freudenthal Compactification

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

The Freudenthal Compactification

★ Ξ → ★ Ξ →

æ

The Freudenthal Compactification

Every ray converges to its end!

프 🖌 🛪 프 🛌

Circle (Diestel & Kühn): A homeomorphic image of S^1 in the Freudenthal Compactification |G| of G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Circle: A homeomorphic image of S^1 in |G|.

Hamilton circle: a circle containing all vertices

(* E) * E) E

Circle: A homeomorphic image of S^1 in |G|.

<週 > < 注 > < 注 > □ = - 注

The Theorem

Theorem (G '06)

The square of a locally finite 2-connected graph has a Hamilton circle

- make *G* eulerian by deleting edges and by doubling existing edges
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

▲□ → ▲ □ → ▲ □ → ▲ □ → ④ Q ()

- make *G* eulerian by deleting edges and by doubling existing edges
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

▲□ → ▲ □ → ▲ □ → ▲ □ → ④ Q ()

- make G eulerian by deleting edges and by doubling existing edges
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

• How do you define an Euler tour?

同 ト イヨ ト イヨ ト ヨ うくべ

Euler Tours

Euler tour (Diestel & Kühn):

A continuous image of S^1 in |G| traversing each edge exactly once.

Angelos Georgakopoulos Fleischner's Theorem for Infinite Graphs

- make G eulerian by deleting edges and by doubling existing edges
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

• How do you define an Euler tour?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

- make *G* eulerian by deleting edges and by doubling existing edges
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

- How do you define an Euler tour?
- deleting edges may change the topology

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

- make *G* eulerian by deleting edges and by doubling existing edges
- pick an Euler tour
- bridge crossings to turn the Euler tour into a Hamilton cycle

It will not work if we have too many crossings

Extra problems for infinite graphs:

- How do you define an Euler tour?
- deleting edges may change the topology
- need a special Euler tour

코 (코) - 코

End-faithful Euler Tours

Theorem (G '06)

If a locally finite graph has an Euler tour then it also has one visiting each end exactly once.

Angelos Georgakopoulos Fleischner's Theorem for Infinite Graphs