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A model for Mafia growth

A “social” network evolves in
(continuous or discrete)

time according to the following rules
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A model for Mafia growth

When a (Poisson) clock ticks, vertices split into two;

When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);
Moreover, a Poisson(λ)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(λ)).

How does the expected size depend on λ?
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As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(λ)).

Does the limit M(λ) depend on the starting network?
No! In other words,
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There is a unique random graph M(λ)
invariant under the above operation.
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As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(λ)).

Is M(λ) finite or infinite?
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How does the expected size depend on λ?
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As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(λ)).

Is its expected size finite or infinite?
finite in the synchronous case,

we don’t know in the asynchronous case
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The expected size of M(λ)

Let χ(λ) := E(|M(λ)|)

Theorem (G & Haslegrave ’18+)

ecλ ≤ χ(λ) ≤ eeCλ

Conjecture:

χ(λ) ∼ λcλ

(backed by simulations)

Is χ(λ) continuous in λ?
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Percolation model

Bernoulli bond percolation on
an infinite graph, i.e.

Each edge
-present with probability p,

and
-absent with probability 1 − p

independently of other edges.

Percolation threshold:

pc := sup{p | Pp( component of o is infinite ) = 0}

E.g. pc(square grid) = 1/2 (Harris ’59 + Kesten ’80)
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Analyticity below pc

χ(p) := Ep(|C(o)|),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)
χ(p) is an analytic function
of p for p ∈ [0,pc) when G is a lattice in Rd .

Proved by extending p and χ(p) to the complex numbers, and
using classical complex analysis (Weierstrass).
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Some complex analysis basics

Theorem (Weierstrass): Let f =
∑

fn be a series of analytic
functions which converges uniformly on each compact subset
of a domain Ω ⊂ C. Then f is analytic on Ω.

Weierstrass M-test: Let (fn) be a sequence of functions such
that there is a sequence of ‘upper bounds’ Mn satisfying

|fn(z)| ≤ Mn,∀x ∈ Ω and
∑

Mn < ∞.

Then the series
∑

fn(x) converges uniformly on Ω.

Theorem (Aizenman & Barsky ’87)
In every vertex-transitive percolation model,

Pp(|C | > n) ≤ c−n
p ,

for every p < pc and some cp > 1.
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Conjectures on the percolation probability

θ(p) := Pp(|C | = ∞),
i.e. the percolation probability.

148 Geoffrey Grimmett

θ(p)

1

pc 1 p

Fig. 1.1. It is generally believed that the percolation probability θ(p) behaves
roughly as indicated here. It is known, for example, that θ is infinitely differen-
tiable except at the critical point pc. The possibility of a jump discontinuity at pc

has not been ruled out when d ≥ 3 but d is not too large.

1.2 Some Possible Questions

Here are some apparently reasonable questions, some of which turn out to be
feasible.

• What is the value of pc?
• What are the structures of the subcritical and supercritical phases?
• What happens when p is near to pc?
• Are there other points of phase transition?
• What are the properties of other ‘macroscopic’ quantities, such as the

mean size of the open cluster containing the origin?
• What is the relevance of the choice of dimension or lattice?
• In what ways are the large-scale properties different if the states of

nearby edges are allowed to be dependent rather than independent?
There is a variety of reasons for the explosion of interest in the percolation

model, and we mention next a few of these.
• The problems are simple and elegant to state, and apparently hard to

solve.
• Their solutions require a mixture of new ideas, from analysis, geometry,

and discrete mathematics.
• Physical intuition has provided a bunch of beautiful conjectures.
• Techniques developed for percolation have applications to other more

complicated spatial random processes, such as epidemic models.
• Percolation gives insight and method for understanding other physical

models of spatial interaction, such as Ising and Potts models.
• Percolation provides a ‘simple’ model for porous bodies and other

‘transport’ problems.
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θ(p) analytic?

Open problem:
Is θ(p) analytic for p > pc?

Appearing in the textbooks Kesten ’82, Grimmett ’96,
Grimmett ’99.
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Our results (G & Panagiotis ’18+)

pc = pC for all regular trees.
–trivial for binary tree, but what about higher degrees?

pc = pC for all planar lattices. –previously open for all graphs;
C∞ known for Zd

n-point functions τ, τf analytic for p > pc on all planar
lattices.
– Braga et.al. ’04 prove analyticity near p = 1 for Zd

pc = pC for continuum percolation in R2.
–asked by Last et.al ’16; C∞ known

pC < 1 for all finitely presented Cayley graphs.
–proved for Zd by Braga et.al. ’02
pC < 1 for all non-amenable graphs.
pC ≤ 1/2 for certain families of triangulations.
– progress on questions of Benjamini & Schramm ’96, and
Benjamini ’16.
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θ(p) analytic?

Open problem:
Is θ(p) analytic for p > pc?

‘it is a well-known problem of debatable interest...’
–Grimmett ’99

‘...this in not just an academic matter. For instance, there are
examples of disordered systems in statistical mechanics that
develop a Griffiths singularity, i.e., systems that have a phase
transition point even though their free energy is a C∞ function.’
–Braga, Proccaci & Sanchis ’02
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Partitions of n

Theorem (Hardy & Ramanujan 1918)
The number of partitions of the integer n is of order

exp(
√

n).

Elementary proof: [P. Erdös, Annals of Mathematics ’42]
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Separating curves in higher dimensions

Question:

Does the expected number of separating ‘surfaces’ of Z3 of size
n surrounding o decay exponentially in n for all p , pc?
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Outlook

Is the expected size of the asynchronous mafia finite?
Find other mafia-type rules
Prove pC = pc in higher dimensions

Further reading:
[A. Georgakopoulos and J. Haslegrave, Percolation on an infinitely

generated group]

[H. Duminil-Copin, Sixty years of percolation]
[H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase

transition for Bernoulli percolation on Zd ]

These slides are on-line
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