From mafia expansion to analytic functions in percolation theory

Agelos Georgakopoulos

THE UNIVERSITY OF WARWICK

Joint work with John Haslegrave, and with Christoforos Panagiotis

A "social" network evolves in (continuous or discrete) time according to the following rules

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

• When a (Poisson) clock ticks, vertices split into two;

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

イロン 不得 とくほ とくほ とう

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

> < 프 > < 프 >

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

> < 프 > < 프 >

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

ヘロト ヘ回ト ヘヨト ヘヨト

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Does the limit $M(\lambda)$ depend on the starting network?

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Does the limit $M(\lambda)$ depend on the starting network? No! In other words,

Theorem

There is a unique random graph $M(\lambda)$ invariant under the above operation.

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Does the limit $M(\lambda)$ depend on the starting network? No! In other words,

Theorem

There is a unique random graph $M(\lambda)$ invariant under the above operation.

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Is $M(\lambda)$ finite or infinite?

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Is $M(\lambda)$ finite or infinite? It is finite almost surely

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Is its expected size finite or infinite?

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

Is its expected size finite or infinite? finite in the synchronous case, we don't know in the asynchronous case

くロト (過) (目) (日)

- When a (Poisson) clock ticks, vertices split into two;
- When a vertex splits, each of its edges gets randomly inherited by one of its offspring (with probability 1/2);
- Moreover, a Poisson(\u03c0)-distributed number of new edges are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a designated vertex converges (to a random graph $M(\lambda)$).

How does the expected size depend on λ ?

くロト (過) (目) (日)

The expected size of $M(\lambda)$

Let $\chi(\lambda) := \mathbb{E}(|M(\lambda)|)$

Theorem (G & Haslegrave '18+)

$$e^{c\lambda} \leq \chi(\lambda) \leq e^{e^{C\lambda}}$$

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

The expected size of $M(\lambda)$

Let $\chi(\lambda) := \mathbb{E}(|M(\lambda)|)$

Theorem (G & Haslegrave '18+)

 $e^{c\lambda} \leq \chi(\lambda) \leq e^{e^{C\lambda}}$

Conjecture:

 $\chi(\lambda) \sim \lambda^{c\lambda}$

(backed by simulations)

<ロト (四) (日) (日) (日) (日) (日) (日)

The expected size of $M(\lambda)$

Let $\chi(\lambda) := \mathbb{E}(|M(\lambda)|)$

Theorem (G & Haslegrave '18+)

 $e^{c\lambda} \leq \chi(\lambda) \leq e^{e^{C\lambda}}$

Conjecture:

$$\chi(\lambda) \sim \lambda^{c\lambda}$$

(backed by simulations)

Is $\chi(\lambda)$ continuous in λ ?

イロン 不良 とくほう 不良 とうほ

Percolation model

Bernoulli bond percolation on an infinite graph, i.e.

Each edge -present with probability *p*, and

-absent with probability 1 - p independently of other edges.

Percolation threshold:

 $p_c := \sup\{p \mid \mathbb{P}_p(\text{ component of } o \text{ is infinite }) = 0\}$

E.g. $p_c(\text{square grid}) = 1/2 (\text{Harris '59} + \text{Kesten '80})$

$\chi(p):=\mathbb{E}_p(|C(o)|),$

i.e. the expected size of the component of the origin o.

Theorem (Kesten '82)

 $\chi(p)$ is an analytic function of p for $p \in [0, p_c)$ when G is a lattice in \mathbb{R}^d .

ヘロト ヘアト ヘビト ヘビト

$\chi(p) := \mathbb{E}_p(|C(o)|),$

i.e. the expected size of the component of the origin o.

Theorem (Kesten '82)

 $\chi(p)$ is an analytic function of p for $p \in [0, p_c)$ when G is a lattice in \mathbb{R}^d .

Proved by extending p and $\chi(p)$ to the complex numbers, and using classical complex analysis (Weierstrass).

くロト (過) (目) (日)

Some complex analysis basics

Theorem (Weierstrass): Let $f = \sum f_n$ be a series of analytic functions which converges uniformly on each compact subset of a domain $\Omega \subset \mathbb{C}$. Then *f* is analytic on Ω .

Weierstrass M-test: Let (f_n) be a sequence of functions such that there is a sequence of 'upper bounds' M_n satisfying

$$|f_n(z)| \le M_n, \forall x \in \Omega$$
 and $\sum M_n < \infty$.

Then the series $\sum f_n(x)$ converges uniformly on Ω .

프 🖌 🛪 프 🛌

Some complex analysis basics

Theorem (Weierstrass): Let $f = \sum f_n$ be a series of analytic functions which converges uniformly on each compact subset of a domain $\Omega \subset \mathbb{C}$. Then *f* is analytic on Ω .

Weierstrass M-test: Let (f_n) be a sequence of functions such that there is a sequence of 'upper bounds' M_n satisfying

$$|f_n(z)| \le M_n, \forall x \in \Omega$$
 and $\sum M_n < \infty$.

Then the series $\sum f_n(x)$ converges uniformly on Ω .

Conjectures on the percolation probability

$$\begin{split} \theta(p) &:= \mathbb{P}_p(|\mathcal{C}| = \infty), \\ &\text{ i.e. the percolation probability.} \end{split}$$

148

Fig. 1.1. It is generally believed that the percolation probability $\theta(p)$ behaves roughly as indicated here. It is known, for example, that θ is infinitely differentiable except at the critical point p_c . The possibility of a jump discontinuity at p_c has not been ruled out when $d \ge 3$ but d is not too large.

Is $\theta(p)$ analytic for $p > p_c$?

Appearing in the textbooks Kesten '82, Grimmett '96, Grimmett '99.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

p_c = *p*_ℂ for all regular trees.
 −trivial for binary tree, but what about higher degrees?

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

- *p_c* = *p*_ℂ for all regular trees.
 −trivial for binary tree, but what about higher degrees?
- *p_c* = *p*_C for all planar lattices. –*previously open for all graphs; C*[∞] known for Z^d

<ロ> <問> <問> < 同> < 同> < 同> < 同> < 同

- *p_c* = *p*_ℂ for all regular trees.
 −trivial for binary tree, but what about higher degrees?
- *p_c* = *p*_ℂ for all planar lattices. –previously open for all graphs;
 C[∞] known for ℤ^d
- *n*-point functions τ, τ^f analytic for p > p_c on all planar lattices.

- Braga et.al. '04 prove analyticity near p = 1 for \mathbb{Z}^d

p_c = *p*_ℂ for continuum percolation in ℝ².
 −asked by Last et.al '16; C[∞] known

イロト イポト イヨト 一旦

- *p_c* = *p*_ℂ for all regular trees.
 −trivial for binary tree, but what about higher degrees?
- *p_c* = *p*_ℂ for all planar lattices. –previously open for all graphs;
 C[∞] known for Z^d
- *n*-point functions τ, τ^f analytic for p > p_c on all planar lattices.
 - Braga et.al. '04 prove analyticity near p = 1 for \mathbb{Z}^d
- *p_c* = *p*_ℂ for continuum percolation in ℝ².
 −asked by Last et.al '16; C[∞] known
- *p*_ℂ < 1 for all finitely presented Cayley graphs.
 proved for Z^d *by Braga et.al.* '02
- $p_{\mathbb{C}} < 1$ for all non-amenable graphs.
- $p_{\mathbb{C}} \leq 1/2$ for certain families of triangulations.

– progress on questions of Benjamini & Schramm '96, and Benjamini '16.

Is $\theta(p)$ analytic for $p > p_c$?

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

イロン 不得 とくほ とくほう 一座

Is $\theta(p)$ analytic for $p > p_c$?

'it is a well-known problem of debatable interest...' —Grimmett '99

イロト イポト イヨト イヨト 一座

Is $\theta(p)$ analytic for $p > p_c$?

'it is a well-known problem of debatable interest...' —Grimmett '99

...this in not just an academic matter. For instance, there are examples of disordered systems in statistical mechanics that develop a Griffiths singularity, i.e., systems that have a phase transition point even though their free energy is a C[∞] function.'
-Braga, Proccaci & Sanchis '02

Theorem (Hardy & Ramanujan 1918)

The number of partitions of the integer n is of order

 $exp(\sqrt{n}).$

Elementary proof: [P. Erdös, Annals of Mathematics '42]

ヘロト ヘ回ト ヘヨト ヘヨト

Question:

Does the expected number of separating 'surfaces' of \mathbb{Z}^3 of size *n* surrounding *o* decay exponentially in *n* for all $p \neq p_c$?

★ E ► ★ E ►

Outlook

- Is the expected size of the asynchronous mafia finite?
- Find other mafia-type rules
- Prove $p_{\mathbb{C}} = p_c$ in higher dimensions

Further reading:

[A. Georgakopoulos and J. Haslegrave, Percolation on an infinitely generated group]

[*H. Duminil-Copin, Sixty years of percolation*] [*H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on* \mathbb{Z}^d]

