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Random Graphs from trees
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Random Graphs from trees

Simulation by A. Janse van Rensburg.
(Both figures depict the same graph.)
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A nice property

Proposition
For every two measurable

subsets X ,Y of the Martin
boundary ∂G,

E(] edges xy in Rn

with x ‘close to’ X
and y ‘close to’ Y )

converges.

We use the limit to define a measure on ∂G × ∂G via

C(X ,Y ) := limE(] edges ...)
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Effective conductance

We call C the effective conductance measure, because

Theorem (G & V. Kaimanovich ’12-’16+)
For every locally finite network G, and every harmonic
function h, we have

E(h) =
∫
∂G×∂G

(̂
h(η) − ĥ(ζ)

)2
dC(η, ζ).

Finite version: E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab

a

b

a

b

Cab
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Long range percolation

(Joint work in progress with O. Angel, G. Ray,
and with J. Haslegrave)

Theorem (Newman & Schulman, Aizenman & Newman ’86)

In long range percolation on Z, with parameters e−λ/|x−y |s ,
percolation occurs for large enough λ if s ≤ 2.

Rλn(Z2) converges (a la Benjamini-Schramm) to an instance Rλ∞
of this (with s = 2) as n → ∞.

But Rλ∞(Tree) does not percolate for any λ!

How large is Rλ∞(T )?
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The expected size of the TWRG

Let Cλo denote the component of a uniformly random vertex of
Rλn(T ) (or Rλ∞(T )).

Theorem (G & Haslegrave, state of the art 14/1/16)

Aeaλ ≤ E(|Cλo |) ≤ Beebλ
.

Conjecture:
E(|Cλo |) ∼ λ

λ

(backed by simulations)
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Not covered today

Connectivity phase transition

Relation to Sznitmann’s Random Interlacements

Relation to the Green function via the Naim kernel
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Outlook

Understand TWRGs
Interplay between the host group Γ and its GWRGs
Let Γ act on C and see what happens

Thank you!

These slides are on-line.
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