The planar Cayley graphs are effectively enumerable

Agelos Georgakopoulos

THE UNIVERSITY OF WARWICK

Neuchatel, 20/10/15

Agelos Georgakopoulos

Planar Cayley graphs

Groups need to act!

Agelos Georgakopoulos Planar Cayley graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Groups need to act!

Let them act on the plane

Agelos Georgakopoulos Planar Cayley graphs

ヘロト ヘ回ト ヘヨト ヘヨト

Groups need to act!

Let them act on the plane and be finitely generated

Agelos Georgakopoulos Planar Cayley graphs

・ 同 ト ・ 三 ト ・

Planar discontinuous groups:= 'discrete' groups of homeomorphisms of S^2 , \mathbb{R}^2 or \mathbb{H}^2 . discrete:= orbits have no accumulation points

Examples:

2

Planar discontinuous groups

Planar discontinuous groups:= 'discrete' groups of homeomorphisms of S^2 , \mathbb{R}^2 or \mathbb{H}^2 . discrete:= orbits have no accumulation points

Examples:

Planar discontinuous groups:= 'discrete' groups of homeomorphisms of S^2 , \mathbb{R}^2 or \mathbb{H}^2 . discrete:= orbits have no accumulation points

Examples:

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable

See [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt & Coldewey; Lecture Notes in Mathematics]

or [Lyndon & Schupp].

・ 同 ト ・ ヨ ト ・ ヨ ト …

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable

See [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt & Coldewey; Lecture Notes in Mathematics]

or [Lyndon & Schupp].

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable

See [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt & Coldewey; Lecture Notes in Mathematics]

or [Lyndon & Schupp].

Are Planar discontinuous groups exactly those having a planar Cayley graph?

イロン 不得 とくほ とくほ とう

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable

See [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt & Coldewey; Lecture Notes in Mathematics]

or [Lyndon & Schupp].

Are Planar discontinuous groups exactly those having a planar Cayley graph? **NO!**

ヘロト ヘ回ト ヘヨト ヘヨト

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable

See [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt & Coldewey; Lecture Notes in Mathematics]

or [Lyndon & Schupp].

Are Planar discontinuous groups exactly those having a planar Cayley graph? **NO!**

Definition: a group is planar, if it has a planar Cayley graph.

くロト (過) (目) (日)

Charactisation of the finite planar groups

Definition: a group is planar, if it has a planar Cayley graph.

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2 .

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2 .

See [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt & Coldewey; Lecture Notes in Mathematics]

Theorem (G '12, Known?)

A group has a flat Cayley complex if and only if it has a accumulation-free Cayley graph.

(In which case it is a planar discontinuous group.)

<ロ> <問> <問> < 同> < 同> < 同> < 同> < 同

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

- A facial presentation is a triple ($\mathcal{P} = \langle S | \mathcal{R} \rangle, \sigma, \tau$), where
 - σ is a spin, i.e. a cyclic ordering on S, and
 - *τ* : S → {T, F} decides which generators are spin-preserving or spin-reversing, so that
 - every relator is a facial word.

イロト イポト イヨト イヨト 三油

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

based on...

Theorem (Whitney '32)

Let G be a 3-connected plane graph. Then every automorphism of G extends to a homeomorphism of the sphere.

... in other words, every automorphism of *G* preserves facial paths.

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

- A facial presentation is a triple ($\mathcal{P} = \langle S | \mathcal{R} \rangle, \sigma, \tau$), where
 - σ is a spin, i.e. a cyclic ordering on S, and
 - *τ* : S → {T, F} decides which generators are spin-preserving or spin-reversing, so that
 - every relator is a facial word.

イロト イポト イヨト イヨト 三油

Examples:

<ロ> (四) (四) (三) (三) (三)

Agelos Georgakopoulos Planar Cayley graphs

Examples:

Examples:

<ロ> (四) (四) (三) (三) (三)

Examples:

<ロ> (四) (四) (三) (三) (三)

<週 > < 注 > < 注 > . 注

Open Problems:

Agelos Georgakopoulos Planar Cayley graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs? Problem (Bonnington & Watkins (unpublished))

Does every planar 3-connected locally finite transitive graph have at least one face bounded by a cycle.

イロト イポト イヨト イヨト

... and what about all the classical theory?

Theorem (Dunwoody '09)

If Γ is a group and G is a connected locally finite planar graph on which Γ acts freely so that Γ/G is finite, then Γ or an index two subgroup of Γ is the fundamental group of a graph of groups in which each vertex group is either a planar discontinuous group or a free product of finitely many cyclic groups and all edge groups are finite cyclic groups (possibly trivial).

イロト イ押ト イヨト イヨトー

Classification of the cubic planar Cayley graphs

Theorem (G '10, to appear in Memoirs AMS)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of **the list**.

イロン 不得 とくほ とくほ とう

Classification of the cubic planar Cayley graphs

Theorem (G '10, to appear in Memoirs AMS)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of **the list**.

Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.

ヘロト ヘ回ト ヘヨト ヘヨト

Recall that every accumulation-free Cayley graph has a facial presentation.

イロト イポト イヨト イヨト 一座

Recall that every accumulation-free Cayley graph has a facial presentation. What about

イロト イポト イヨト イヨト

Recall that every accumulation-free Cayley graph has a facial presentation. What about

Recall that

G has a facial presentation $\ll G$ has a flat Cayley complex

.≣⇒

(日)

Recall that every accumulation-free Cayley graph has a facial presentation. What about

Recall that

G has a facial presentation $\langle = \rangle$ *G* has a flat Cayley complex

How do we generalise?

A presentation $\mathcal{P} = < S | \mathcal{R} >$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

 σ is a spin, i.e. a cyclic ordering on S $\tau: S \to \{T, F\}$ decides which generators are spin-preserving or spin-reversing

イロト イポト イヨト イヨト 三油

A Cayley graph G is planar iff it admits a planar presentation.

A presentation $\mathcal{P} = < S | \mathcal{R} >$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

ヘロト ヘ回ト ヘヨト ヘヨト

A Cayley graph G is planar iff it admits a planar presentation.

A presentation $\mathcal{P} = < \mathcal{S} | \mathcal{R} >$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

Cheat: this is a simplified definition, corresponding to the 3-connected case;

The general (2-connected) case is much harder to state and prove.

(人) 医子子 医子子 医

A Cayley graph G is planar iff it admits a planar presentation.

A presentation $\mathcal{P} = < S | \mathcal{R} >$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

The proof of forward direction involves ramifications of Dunwoody cuts. The proof of the backward direction is elementary, and mainly graph-theoretic, but hard.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Draw the corresponding tree $\mathbb{T}_{\mathcal{S}}:=\textit{Cay}<\mathcal{S}\mid \emptyset>$ accumulation-free in \mathbb{R}^2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Draw the corresponding tree $\mathbb{T}_{\mathcal{S}}:=Cay<\mathcal{S}\mid \emptyset>$ accumulation-free in \mathbb{R}^2

Let *D* be a fundamental domain of \mathbb{T}_S w.r.t. $N(\mathcal{R})$. We can choose *D* connected.

イロト イポト イヨト イヨト 一座

Draw the corresponding tree $\mathbb{T}_{\mathcal{S}}:=Cay<\mathcal{S}\mid \emptyset>$ accumulation-free in \mathbb{R}^2

Let *D* be a fundamental domain of \mathbb{T}_S w.r.t. $N(\mathcal{R})$. We can choose *D* connected.

Note that if ∂D is nested, then G is planar

Draw the corresponding tree $\mathbb{T}_{\mathcal{S}}:=Cay<\mathcal{S}\mid \emptyset>$ accumulation-free in \mathbb{R}^2

Let *D* be a fundamental domain of \mathbb{T}_S w.r.t. $N(\mathcal{R})$. We can choose *D* connected.

Note that if ∂D is nested, then G is planar

It remains to prove that ∂D is nested.

It remains to prove that ∂D is nested.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

It remains to prove that ∂D is nested.

Assume x, x' and y, y' is a non-nested pair

It remains to prove that ∂D is nested.

Assume x, x' and y, y' is a non-nested pair

Observe that in \mathbb{R}^2 every cycle has two sides; a non-nested pair would contradict this.

It remains to prove that ∂D is nested.

Assume x, x' and y, y' is a non-nested pair

Observe that in \mathbb{R}^2 every cycle has two sides; a non-nested pair would contradict this.

We'll reverse engineer: given a cycle C in G, we want to define two 'sides' of C.

It remains to prove that ∂D is nested.

Assume x, x' and y, y' is a non-nested pair

Observe that in \mathbb{R}^2 every cycle has two sides; a non-nested pair would contradict this.

We'll reverse engineer: given a cycle C in G, we want to define two 'sides' of C.

Two steps:

-Step 1: if C comes from a relator W

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

イロト イポト イヨト イヨト 三油

It remains to prove that ∂D is nested.

We want to define two 'sides' of *C*. —Step 1: if *C* comes from a relator $W \in \mathcal{R}$

ヘロト ヘ回ト ヘヨト ヘヨト

It remains to prove that ∂D is nested.

We want to define two 'sides' of *C*. —Step 1: if *C* comes from a relator $W \in \mathcal{R}$

OK!

イロト イポト イヨト イヨト 一座

It remains to prove that ∂D is nested.

We want to define two 'sides' of *C*. —Step 1: if *C* comes from a relator $W \in \mathcal{R}$

OK!

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

イロト イポト イヨト イヨト 一座

If $\mathcal{P} = \langle S | \mathcal{R} \rangle$ is a planar presentation, then its Cayley graph *G* is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

▲□▶▲圖▶▲圖▶▲圖▶ ▲■ 今へ⊙

If $\mathcal{P} = \langle S | \mathcal{R} \rangle$ is a planar presentation, then its Cayley graph *G* is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

We are inclined to say 'let the inside of C be the union of insides of the W_i '... but we don't know what's inside/outside!

イロト イポト イヨト イヨト 一座

If $\mathcal{P} = \langle S | \mathcal{R} \rangle$ is a planar presentation, then its Cayley graph *G* is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

We are inclined to say 'let the inside of *C* be the union of insides of the W_i '... but we don't know what's inside/outside! Let's still try:

$$I_C := I_1 \triangle I_2 \triangle \dots I_k$$
$$O_C := O_1 \triangle O_2 \triangle \dots O_k$$

Suppose it works;

If $\mathcal{P} = \langle S | \mathcal{R} \rangle$ is a planar presentation, then its Cayley graph *G* is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

We are inclined to say 'let the inside of *C* be the union of insides of the W_i '... but we don't know what's inside/outside! Let's still try:

$$I_C := I_1 \triangle I_2 \triangle \dots I_k$$
$$O_C := O_1 \triangle O_2 \triangle \dots O_k$$

Suppose it works;

If $\mathcal{P} = \langle S | \mathcal{R} \rangle$ is a planar presentation, then its Cayley graph *G* is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

We are inclined to say 'let the inside of *C* be the union of insides of the W_i '... but we don't know what's inside/outside! Let's still try:

$$I_C := I_1 \triangle O_2 \triangle \dots I_k$$
$$O_C := O_1 \triangle I_2 \triangle \dots O_k$$

Suppose it works;

If $\mathcal{P} = \langle S | \mathcal{R} \rangle$ is a planar presentation, then its Cayley graph *G* is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.

—Step 2: for general *C*, write $C = \sum W_i$, and apply Step 1 to each W_i .

We are inclined to say 'let the inside of *C* be the union of insides of the W_i '... but we don't know what's inside/outside! Let's still try:

 $I_C := I_1 \triangle O_2 \triangle \dots I_k$ $O_C := O_1 \triangle I_2 \triangle \dots O_k$

(個) (目) (日) (日)

Suppose it works; then anything works!

A Cayley graph G is planar iff it admits a planar presentation.

Corollary

The planar groups are effectively enumerable.

(Answering Droms et. al.)

ヘロン 人間 とくほ とくほ とう

Outlook

Generalise to include

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Agelos Georgakopoulos Planar Cayley graphs

Generalise to include

< 🗇 🕨

Does anybody know if the groups having a Cayley complex embeddable in \mathbb{R}^3 have been characterised?

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Can we generalise this to graphs?

.≣⇒.

▲ 🗇 ▶ → 三 ▶ →

Thank you!

