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Groups need to act!

Let them act on the plane
and be finitely generated
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Planar discontinuous groups

Planar discontinuous groups:= ‘discrete’ groups of
homeomorphisms of S2, R2 or H2.
discrete:= orbits have no accumulation points

Examples:
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Known facts

Planar discontinuous groups
admit planar Cayley graphs
are virtually surface groups
admit one-relator presentations
are effectively enumerable

see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt &
Coldewey; Lecture Notes in Mathematics]
or [Lyndon & Schupp].

Are Planar discontinuous groups exactly those having a planar
Cayley graph?

Definition: a group is planar, if it has a planar Cayley graph.
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Charactisation of the finite planar groups

Definition: a group is planar, if it has a planar Cayley graph.

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S2.
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The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)
Every 1-ended planar Cayley graph corresponds
to a group of isometries of R2 or H2.

see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt &
Coldewey; Lecture Notes in Mathematics]quasi_6_4.gif (GIF Image, 560x420 pixels) http://www.math.cornell.edu/~mec/Winter2009/Mihai/section...

1 of 1 10/28/10 11:47 AM
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The Cayley complex

Theorem (G ’12, Known?)
A group has a flat Cayley complex if and only if it
has a accumulation-free Cayley graph.

(In which case it is a planar discontinuous group.)
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Facial presentations

Theorem (G ’12)
A Cayley graph admits an accumulation-free embedding
if and only if it admits a facial presentation.

based on...

Theorem (Whitney ’32)
Let G be a 3-connected plane graph. Then
every automorphism of G extends to a
homeomorphism of the sphere.

... in other words, every automorphism of G preserves facial
paths.
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planar Cayley graphs with accumulation points

Examples:

b

ac
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What we didn’t know

Open Problems:

Problem (Mohar)

How can you split
a planar Cayley
graph with > 1
ends into simpler
Cayley graphs?

Problem (Droms et. al.)

Is there an effective
enumeration of the
planar locally finite
Cayley graphs?

Problem (Bonnington &
Watkins (unpublished))

Does every planar
3-connected locally
finite transitive graph
have at least one face
bounded by a cycle.

... and what about all the classical theory?
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Dunwoody’s theorem

Theorem (Dunwoody ’09)
If Γ is a group and G is a connected locally finite planar graph
on which Γ acts freely so that Γ/G is finite, then Γ or an index
two subgroup of Γ is the fundamental group of a graph of
groups in which each vertex group is either a planar
discontinuous group or a free product of finitely many cyclic
groups and all edge groups are finite cyclic groups (possibly
trivial).
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Classification of the cubic planar Cayley graphs

Theorem (G ’10, to appear in Memoirs AMS)
Let G be a planar cubic Cayley graph. Then G is
colour-isomorphic to precisely one element of the
list.

Conversely, for every element of the list and any
choice of parameters, the corresponding Cayley
graph is planar.
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Presentations of planar Cayley graphs with
accumulation points?

Recall that every accumulation-free Cayley graph has a facial
presentation.

What about

?
Recall that
G has a facial presentation <=> G has a flat Cayley complex

How do we generalise?
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Planar presentations

A presentation P =< S | R > is planar, if it can be endowed with
spin data σ, τ so that

no two relator words cross
every relator contains an even number of spin-reversing
letters.

σ is a spin, i.e. a cyclic ordering on S
τ : S → {T ,F } decides which generators are spin-preserving or
spin-reversing
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The Theorem

Theorem (G & Hamann, ’14)

A Cayley graph G is planar iff it
admits a planar presentation.

A presentation P =< S | R > is planar, if it can be endowed with
spin data σ, τ so that

no two relator words cross
every relator contains an even number of spin-reversing
letters.

The proof of forward direction involves ramifications of
Dunwoody cuts. The proof of the backward direction is
elementary, and mainly graph-theoretic, but hard.
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admits a planar presentation.

A presentation P =< S | R > is planar, if it can be endowed with
spin data σ, τ so that

no two relator words cross
every relator contains an even number of spin-reversing
letters.

Cheat: this is a simplified definition, corresponding to the
3-connected case;
The general (2-connected) case is much harder to state and prove.
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cuts. The proof of the backward direction is elementary, and mainly
graph-theoretic, but hard.
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Proof ideas: backward direction

If P =< S | R > is a planar presentation, then its Cayley graph G
is planar.

Draw the corresponding tree TS := Cay < S | ∅ >
accumulation-free in R2

Let D be a fundamental domain of TS w.r.t. N(R).
We can choose D connected.

Note that if ∂D is nested, then G is planar

It remains to prove that ∂D is nested.
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Proof ideas: backward direction

If P =< S | R > is a planar presentation, then its Cayley graph G
is planar.

It remains to prove that ∂D is nested.

Assume x , x ′ and y , y ′ is a non-nested pair

Observe that in R2 every cycle has two sides; a non-nested pair
would contradict this.

We’ll reverse engineer: given a cycle C in G, we want to define
two ‘sides’ of C.

Two steps:
—Step 1: if C comes from a relator W
—Step 2: for general C, write C =

∑
Wi , and apply Step 1 to

each Wi .
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Proof ideas: backward direction

If P =< S | R > is a planar presentation, then its Cayley graph G
is planar.

It remains to prove that ∂D is nested.

We want to define two ‘sides’ of C.
—Step 2: for general C, write C =

∑
Wi , and apply Step 1 to

each Wi .

We are inclined to say ‘let the inside of C be the union of
insides of the Wi ’... but we don’t know what’s inside/outside!

Let’s still try:

IC := I14O24 . . . Ik
OC := O14I24 . . .Ok

Suppose it works; then anything works!
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The Theorem

Theorem (G & Hamann, ’14)

A Cayley graph G is planar iff it
admits a planar presentation.

Corollary
The planar groups are effectively enumerable.

(Answering Droms et. al.)
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Outlook

Generalise to include

Baumslag-Solitar_Cayley_3D.svg.png (PNG Image, 440 × 55... https://upload.wikimedia.org/wikipedia/commons/thumb/b/b...
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Does anybody know if the groups having a Cayley
complex embeddable in R3 have been characterised?
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Outlook

Theorem (Stallings ’71)
Every group with >1 ends can be written as an HNN-extension
or an amalgamation product over a finite subgroup.

Can we generalise this to graphs?

Figure 3: A portion of the Cayley graph of HNN G A B ψ

the Cayley graph of G with respect to X . If X is any other finite generating set for
G, then the number of ends of C G X is the same as that of C G X , and so we
refer to this number as the number of ends of G. It is well-known that the number of
ends of a finitely generated group is either 0 (in case G is finite), 1 (for example, if
G ), 2 (if G is virtually infinite cyclic) or uncountably infinite (if G is free of
rank two, for example.)

Stallings’s Theorem [15, 16] states that any finitely generated group with more than
one end is either a nontrivial free product with finite amalgamated subgroups, or an
HNN extension with finite associated subgroups—that is, G is the fundamental group
of a graph of groups which has one edge, where the edge group is finite.

Given a subgraph f of a graph Γ, we define f to be the subgraph of Γ spanned by
the vertices which do not belong to f . We call f the complement of f . The set of edges
which belong neither to f nor to f (that is, the set of edges which have one endpoint
in f and the other in f ) is called the coboundary of f , and is denoted δ f . Note that
δ f δ f .

Let C be a Cayley graph for G, and suppose that G (and hence C ) has more than
one end. Then there is a cut in C : that is, an infinite connected subgraph e0 whose
complement e0 is also connected and infinite, and whose coboundary is finite. Let
E ge0 g G ge0 g G . Then there is an equivalence relation on E , defined
as follows: given x and y in E , we set x y if x is, among elements of E , a maximal
proper subset of y. (Note that x x for all x, and that if x y, then δx is disjoint from
y.) Let V denote the set of –classes.

Lemma 3.1 [5, 6] The sets V and E are, respectively, the vertex and edge sets of an
undirected tree T , on which G acts. Each pair x x E represents the two possible

5
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Thank you!
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