The planar Cayley graphs are effectively enumerable

Agelos Georgakopoulos
THE UNIVERSITY OF
WARWICK

Neuchatel, 20/10/15

Groups need to act!

Groups need to act!

Let them act on the plane

Groups need to act!

Let them act on the plane and be finitely generated

Planar discontinuous groups

Planar discontinuous groups:= 'discrete’ groups of homeomorphisms of $\mathbb{S}^{2}, \mathbb{R}^{2}$ or \mathbb{H}^{2}. discrete:= orbits have no accumulation points

Examples:

Planar discontinuous groups

Planar discontinuous groups:= 'discrete’ groups of homeomorphisms of $\mathbb{S}^{2}, \mathbb{R}^{2}$ or \mathbb{H}^{2}. discrete:= orbits have no accumulation points Examples:

Planar discontinuous groups

Planar discontinuous groups:= 'discrete' groups of homeomorphisms of $\mathbb{S}^{2}, \mathbb{R}^{2}$ or \mathbb{H}^{2}.
discrete:= orbits have no accumulation points
Examples:

Known facts

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable
see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt \& Coldewey; Lecture Notes in Mathematics]
or [Lyndon \& Schupp].

Known facts

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable
see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt \& Coldewey; Lecture Notes in Mathematics] or [Lyndon \& Schupp].

Known facts

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable
see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt \& Coldewey; Lecture Notes in Mathematics]
or [Lyndon \& Schupp].

Are Planar discontinuous groups exactly those having a planar Cayley graph?

Known facts

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable
see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt \& Coldewey; Lecture Notes in Mathematics]
or [Lyndon \& Schupp].

Are Planar discontinuous groups exactly those having a planar Cayley graph? NO!

Known facts

Planar discontinuous groups

- admit planar Cayley graphs
- are virtually surface groups
- admit one-relator presentations
- are effectively enumerable
see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt \& Coldewey; Lecture Notes in Mathematics]
or [Lyndon \& Schupp].

Are Planar discontinuous groups exactly those having a planar Cayley graph? NO!

Definition: a group is planar, if it has a planar Cayley graph.

Charactisation of the finite planar groups

Definition: a group is planar, if it has a planar Cayley graph.

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^{2}.

The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^{2} or \mathbb{H}^{2}.
see [Surfaces and Planar Discontinuous Groups, Zieschang, Vogt \& Coldewey; Lecture Notes in Mathematics]

The Cayley complex

Theorem (G'12, Known?)
 A group has a flat Cayley complex if and only if it has a accumulation-free Cayley graph.

(In which case it is a planar discontinuous group.)

Facial presentations

Theorem (G '12)

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

Facial presentations

Theorem (G '12)

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

A facial presentation is a triple $(\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>, \sigma, \tau)$, where

- σ is a spin, i.e. a cyclic ordering on \mathcal{S}, and
- $\tau: S \rightarrow\{T, F\}$ decides which generators are spin-preserving or spin-reversing, so that
- every relator is a facial word.

Facial presentations

Theorem (G '12)

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.
based on...

> Theorem (Whitney '32)
> Let G be a 3-connected plane graph. Then every automorphism of G extends to a homeomorphism of the sphere.
... in other words, every automorphism of G preserves facial paths.

Facial presentations

Theorem (G '12)

A Cayley graph admits an accumulation-free embedding if and only if it admits a facial presentation.

A facial presentation is a triple $(\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>, \sigma, \tau)$, where

- σ is a spin, i.e. a cyclic ordering on \mathcal{S}, and
- $\tau: S \rightarrow\{T, F\}$ decides which generators are spin-preserving or spin-reversing, so that
- every relator is a facial word.

planar Cayley graphs with accumulation points

Examples:

planar Cayley graphs with accumulation points

Examples:

planar Cayley graphs with accumulation points

Examples:

planar Cayley graphs with accumulation points

Examples:

planar Cayley graphs with accumulation points

Examples:

What we didn't know

Open Problems:

What we didn't know

Open Problems:

Problem (Droms et. al.)

 Is there an effective enumeration of the planar locally finite Cayley graphs?
Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Bonnington \& Watkins (unpublished))

> Does every planar 3-connected locally finite transitive graph have at least one face bounded by a cycle.
... and what about all the classical theory?

Dunwoody's theorem

Theorem (Dunwoody '09)

If Γ is a group and G is a connected locally finite planar graph on which Γ acts freely so that Γ / G is finite, then Γ or an index two subgroup of Γ is the fundamental group of a graph of groups in which each vertex group is either a planar discontinuous group or a free product of finitely many cyclic groups and all edge groups are finite cyclic groups (possibly trivial).

Classification of the cubic planar Cayley graphs

Theorem (G '10, to appear in Memoirs AMS)
Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.

Classification of the cubic planar Cayley graphs

Theorem (G '10, to appear in Memoirs AMS)
Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.
Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.

Presentations of planar Cayley graphs with accumulation points?

Recall that every accumulation-free Cayley graph has a facial presentation.

Presentations of planar Cayley graphs with accumulation points?

Recall that every accumulation-free Cayley graph has a facial presentation.
What about

?

Presentations of planar Cayley graphs with accumulation points?

Recall that every accumulation-free Cayley graph has a facial presentation.
What about

?
Recall that
G has a facial presentation <=> G has a flat Cayley complex

Presentations of planar Cayley graphs with accumulation points?

Recall that every accumulation-free Cayley graph has a facial presentation.
What about

?
Recall that
G has a facial presentation <=> G has a flat Cayley complex How do we generalise?

Planar presentations

A presentation $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.
σ is a spin, i.e. a cyclic ordering on \mathcal{S}
$\tau: \mathcal{S} \rightarrow\{T, F\}$ decides which generators are spin-preserving or spin-reversing

The Theorem

Theorem (G \& Hamann, '14)
 A Cayley graph G is planar iff it admits a planar presentation.

A presentation $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

The Theorem

Theorem (G \& Hamann, '14)

A Cayley graph G is planar iff it admits a planar presentation.

A presentation $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

Cheat: this is a simplified definition, corresponding to the 3-connected case;
The general (2-connected) case is much harder to state and prove.

The Theorem

Theorem (G \& Hamann, '14)
 A Cayley graph G is planar iff it admits a planar presentation.

A presentation $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is planar, if it can be endowed with spin data σ, τ so that

- no two relator words cross
- every relator contains an even number of spin-reversing letters.

The proof of forward direction involves ramifications of Dunwoody cuts. The proof of the backward direction is elementary, and mainly graph-theoretic, but hard.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

Draw the corresponding tree $\mathbb{T}_{S}:=$ Cay $\langle\mathcal{S} \mid \emptyset\rangle$ accumulation-free in \mathbb{R}^{2}

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

Draw the corresponding tree $\mathbb{T}_{s}:=$ Cay $\langle\mathcal{S}| \emptyset>$ accumulation-free in \mathbb{R}^{2}

Let D be a fundamental domain of \mathbb{T}_{S} w.r.t. $N(\mathcal{R})$. We can choose D connected.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

Draw the corresponding tree $\mathbb{T}_{s}:=$ Cay $\langle\mathcal{S}| \emptyset>$ accumulation-free in \mathbb{R}^{2}

Let D be a fundamental domain of \mathbb{T}_{S} w.r.t. $N(\mathcal{R})$. We can choose D connected.

Note that if ∂D is nested, then G is planar

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

Draw the corresponding tree $\mathbb{T}_{s}:=$ Cay $\langle\mathcal{S}| \emptyset>$ accumulation-free in \mathbb{R}^{2}

Let D be a fundamental domain of \mathbb{T}_{S} w.r.t. $N(\mathcal{R})$. We can choose D connected.

Note that if ∂D is nested, then G is planar
It remains to prove that ∂D is nested.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
Assume x, x^{\prime} and y, y^{\prime} is a non-nested pair

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
Assume x, x^{\prime} and y, y^{\prime} is a non-nested pair
Observe that in \mathbb{R}^{2} every cycle has two sides; a non-nested pair would contradict this.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
Assume x, x^{\prime} and y, y^{\prime} is a non-nested pair
Observe that in \mathbb{R}^{2} every cycle has two sides; a non-nested pair would contradict this.

We'll reverse engineer: given a cycle C in G, we want to define two 'sides' of C.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
Assume x, x^{\prime} and y, y^{\prime} is a non-nested pair
Observe that in \mathbb{R}^{2} every cycle has two sides; a non-nested pair would contradict this.

We'll reverse engineer: given a cycle C in G, we want to define two 'sides' of C.

Two steps:
—Step 1: if C comes from a relator W
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
-Step 1: if C comes from a relator $W \in \mathcal{R}$

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
-Step 1: if C comes from a relator $W \in \mathcal{R}$
OK!

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
-Step 1: if C comes from a relator $W \in \mathcal{R}$

OK!

—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.

We want to define two 'sides' of C.
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.
We are inclined to say 'let the inside of C be the union of insides of the $W_{i}^{\prime} . .$. but we don't know what's inside/outside!

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.
We are inclined to say 'let the inside of C be the union of insides of the $W_{i}^{\prime} \ldots$ but we don't know what's inside/outside!
Let's still try:

$$
\begin{gathered}
I_{C}:=I_{1} \Delta I_{2} \Delta \ldots I_{k} \\
O_{C}:=O_{1} \Delta O_{2} \Delta \ldots O_{k}
\end{gathered}
$$

Suppose it works;

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.
We are inclined to say 'let the inside of C be the union of insides of the $W_{i}^{\prime} \ldots$ but we don't know what's inside/outside!
Let's still try:

$$
\begin{gathered}
I_{C}:=I_{1} \Delta I_{2} \Delta \ldots I_{k} \\
O_{C}:=O_{1} \Delta O_{2} \Delta \ldots O_{k}
\end{gathered}
$$

Suppose it works;

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.
We are inclined to say 'let the inside of C be the union of insides of the $W_{i}^{\prime} . .$. but we don't know what's inside/outside!
Let's still try:

$$
\begin{aligned}
I_{C} & :=I_{1} \triangle O_{2} \Delta \ldots I_{k} \\
O_{C} & :=O_{1} \Delta I_{2} \Delta \ldots O_{k}
\end{aligned}
$$

Suppose it works;

Proof ideas: backward direction

If $\mathcal{P}=<\mathcal{S} \mid \mathcal{R}>$ is a planar presentation, then its Cayley graph G is planar.

It remains to prove that ∂D is nested.
We want to define two 'sides' of C.
—Step 2: for general C, write $C=\sum W_{i}$, and apply Step 1 to each W_{i}.
We are inclined to say 'let the inside of C be the union of insides of the $W_{i}^{\prime} . .$. but we don't know what's inside/outside!
Let's still try:

$$
\begin{aligned}
I_{C} & :=I_{1} \Delta O_{2} \Delta \ldots I_{k} \\
O_{C} & :=O_{1} \Delta I_{2} \Delta \ldots O_{k}
\end{aligned}
$$

Suppose it works; then anything works!

The Theorem

Theorem (G \& Hamann, '14)
 A Cayley graph G is planar iff it admits a planar presentation.

Corollary

The planar groups are effectively enumerable.
(Answering Droms et. al.)

Outlook

Generalise to include

Outlook

Generalise to include

Does anybody know if the groups having a Cayley complex embeddable in \mathbb{R}^{3} have been characterised?

Outlook

Theorem (Stallings '71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.

Can we generalise this to graphs?

Thank you!

erc
nemmencome

