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A model for Mafia growth

A “social” network evolves in

(continuous or discrete)
time according to the following rules
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@ When a vertex splits, each of its edges gets randomly
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@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

Is M(2) finite or infinite?
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

Is its expected size finite or infinite?
finite in the synchronous case,
we don’t know in the asynchronous case
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A model for Mafia growth

@ When a (Poisson) clock ticks, vertices split into two;

@ When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);

@ Moreover, a Poisson(1)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(Q)).

How does the expected size depend on 17
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The expected size of M(2)

Let x(2) := E(M(2)|)

Theorem (G & Haslegrave '18+)

e < y(1) < e
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(backed by simulations)
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The expected size of M(2)

Let x(2) := E(M(2)|)

Theorem (G & Haslegrave '18+)

e < y(1) < e

Conjecture:

x(1) ~ A%

(backed by simulations)

Is x(1) continuous in A7
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Geometric Random Graphs

(Vague) definition of a Geometric Random Graph:

e vertices are random points in a metric space
(the geometry)
e probability to form an xy edge depends on distance

d(x. ).

Examples:

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture
Notes, 2013.]

[Mathew Penrose. Random Geometric Graphs. Oxford University Press,
2003.]
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Examples:

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture
Notes, 2013.]

[Mathew Penrose. Random Geometric Graphs. Oxford University Press,
2003.]

Random planar maps (Le Gall, Angel & Schramm,...)

Percolation ...
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Random Graphs from trees
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Random Graphs from trees

Simulations by C. Moniz.
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Long Range Percolation:

A random graph with vertex set Z, where the number of
xy-edges has distribution

Po( ).

|x —yI®
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Long Range Percolation on Z

Long Range Percolation:
A random graph with vertex set Z, where the number of

xy-edges has distribution

Po( ).

|x —yI®

Theorem (Newman & Schulman, Aizenman & Newman ’86)

In long range percolation on Z, percolation occurs for large
enough A iff s < 2.
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Percolation model

;‘:ﬂj_—ue-—-'- —  Bernoulli bond percolation on
TR R an infinite graph, i.e.

' rApdn Lo Each edge

HJI‘J _ {j '_']} +:l—Fp—TDE{:- -present with probability p,
Eql5c =N T r.-l_.-.-. | |— j:l.:r- and

A |—'J—.|‘J";.JJ|‘-| e , .

L e i e s L -absent with probability 1 — p

Fr'rr-ﬁ;ﬁ’ ”_:

G I.J[._*.E = independently of other edges.
G Y B

Percolation threshold:

pc := sup{p | Pp( component of o is infinite ) = 0}
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Historical remarks on percolation theory

Classical era:
Introduced by physicists Broadbent & Hammersley '57

pc(square grid) = 1/2 (Harris ’59 + Kesten ’80)

Many results and questions on phase transitions, continuity,
smoothness etc. in the '80s:

Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand,
Newman, Schulman, Slade, Zhang ... (apologies to many!)
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Historical remarks on percolation theory

Classical era:
Introduced by physicists Broadbent & Hammersley '57
pc(square grid) = 1/2 (Harris ’59 + Kesten ’80)

Many results and questions on phase transitions, continuity,
smoothness etc. in the '80s:

Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand,
Newman, Schulman, Slade, Zhang ... (apologies to many!)

Thought of as part of statistical mechanics
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Historical remarks on percolation theory

Modern era:
Benjamini & Schramm '96 popularised percolation on groups
‘beyond Z<’
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... for example, percolation can characterise amenability:
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= Pak & Smirnova-Nagnibeda ’00)

A finitely generated group is non-amenable iff it
has a Cayley graph with pc < py.
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Historical remarks on percolation theory

Modern era:
Benjamini & Schramm '96 popularised percolation on groups
‘beyond Z<’

... for example, percolation can characterise amenability:

Theorem (< Aizenman, Kesten & Newman '87,

= Pak & Smirnova-Nagnibeda ’00)

A finitely generated group is non-amenable iff it
has a Cayley graph with pc < py.

See the textbooks  [Lyons & Peres '15], [Pete '18+]  for more.
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Back to classics: analyticity below p.

x(p) := Ep(IC(0))),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)

x(p) is an analytic function
of p for p € [0, pc) when G is a lattice in R9.
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Back to classics: analyticity below p.

x(p) := Ep(IC(0))),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)

x(p) is an analytic function
of p for p € [0, pc) when G is a lattice in R9.

Proved by extending p and x(p) to the complex numbers, and
using classical complex analysis (Weierstrass).
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Some complex analysis basics

Theorem (Weierstrass): Let f =} f, be a series of analytic
functions which converges uniformly on each compact subset
of a domain Q c C. Then f is analytic on Q.

Weierstrass M-test: Let (f,) be a sequence of functions such
that there is a sequence of ‘upper bounds’ M, satisfying

(2] < Mp,¥xeQ and > My <o,
Then the series } f,(x) converges uniformly on Q.
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Some complex analysis basics

Theorem (Weierstrass): Let f =} f, be a series of analytic
functions which converges uniformly on each compact subset
of a domain Q c C. Then f is analytic on Q.

Weierstrass M-test: Let (f,) be a sequence of functions such
that there is a sequence of ‘upper bounds’ M, satisfying

If,(2) < Mp,¥x e Q  and Z M, < oo.
Then the series } f,(x) converges uniformly on Q.

Theorem (Aizenman & Barsky '87)

In every vertex-transitive percolation model,
Pp(ICl > n) < ¢,
for every p < p. and some ¢, > 1.
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Conjectures on the percolation probability

8(p) := Pp(IC| = o),
i.e. the percolation probability.

148 Geoffrey Grimmett

0(p)

1

Pe 1 p

Fig. 1.1. Tt is generally believed that the percolation probability 6(p) behaves
roughly as indicated here. It is known, for example, that @ is infinitely differen-
tiable except at the critical point pc. The possibility of a jump discontinuity at pc
has not been ruled out when d > 3 but d is not too large.
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6(p) analytic?

Open problem:
Is 6(p) analytic for p > ps?

Appearing in the textbooks Kesten '82, Grimmett ‘96,
Grimmett '99.
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Our results (G & Panagiotis '18+)

@ ¢ etc. analytic for p > p. on regular trees.
—trivial for binary tree, but what about higher degrees?
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Our results (G & Panagiotis '18+)

6 etc. analytic for p > pc on regular trees.

—trivial for binary tree, but what about higher degrees?

Pc = pc on all planar lattices. —previously open for all graphs;
C*> known for 29

Pe = pc for continuum percolation in R2.

—asked by Last et.al '16; C* known

pc < 1 on all finitely presented Cayley graphs.

—proved for Z¢ by Braga et.al. ‘02

@ pc < 1 on all non-amenable graphs.

n-point functions 7, 7" analytic for p > p. on all planar
lattices.
— Braga et.al. ‘04 prove analyticity near p = 1 for Z¢
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Our results (G & Panagiotis '18+)

@ ¢ etc. analytic for p > p. on regular trees.
—trivial for binary tree, but what about higher degrees?

@ pc = pc on all planar lattices. —previously open for all graphs;
C*> known for 29

@ pc = pc for continuum percolation in R2.
—asked by Last et.al '16; C* known

@ pc < 1 on all finitely presented Cayley graphs.
—proved for Z¢ by Braga et.al. ‘02

@ pc < 1 on all non-amenable graphs.

@ n-point functions 7, 7" analytic for p > p. on all planar
lattices.
— Braga et.al. ‘04 prove analyticity near p = 1 for Z¢

@ pc < 1/2 on certain families of triangulations.
— progress on questions of Benjamini & Schramm ’96, and
Benjamini '16.
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6(p) analytic?

Open problem:
Is 6(p) analytic for p > p.?

it is a well-known problem of debatable interest...’
—Grimmett '99

“...this in not just an academic matter. For instance, there are
examples of disordered systems in statistical mechanics that
develop a Griffiths singularity, i.e., systems that have a phase

transition point even though their free energy is a C* function.’
—Braga, Proccaci & Sanchis '02
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Partitions of n

Theorem (Hardy & Ramanujan 1918)

The number of partitions of the integer n is of order

exp(Vn).

Elementary proof: [P, Erdds, Annals of Mathematics '42]
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Finitely presented Cayley graphs

Theorem: pc < 1 for every finitely presented Cayley graph.

Similar arguments, but we had to generalise separating curves
to all graphs.
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@ |s the expected size of the asynchronous mafia finite?

@ Find other mafia-type rules with an invariant distribution

@ Find other geometric random graphs that coincide with
percolation on a group

@ Prove pc = pc in higher dimensions

@ Extend your parameter to C

Further reading:

[H. Duminil-Copin, Sixty years of percolation]

[H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase
transition for Bernoulli percolation on Z9]
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@ |s the expected size of the asynchronous mafia finite?

@ Find other mafia-type rules with an invariant distribution

@ Find other geometric random graphs that coincide with
percolation on a group

@ Prove pc = pc in higher dimensions

@ Extend your parameter to C

Further reading:

[H. Duminil-Copin, Sixty years of percolation]

[H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase
transition for Bernoulli percolation on Z9]

These slides are on-line
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