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A model for Mafia growth

A “social” network evolves in
(continuous or discrete)

time according to the following rules
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A model for Mafia growth

When a (Poisson) clock ticks, vertices split into two;

When a vertex splits, each of its edges gets randomly
inherited by one of its offspring (with probability 1/2);
Moreover, a Poisson(λ)-distributed number of new edges
are added between the two offspring.

Theorem (G & Haslegrave (thanks to G. Ray), 18+)

As time goes to infinity, the distribution of the component of a
designated vertex converges (to a random graph M(λ)).

How does the expected size depend on λ?
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The expected size of M(λ)

Let χ(λ) := E(|M(λ)|)

Theorem (G & Haslegrave ’18+)

ecλ ≤ χ(λ) ≤ eeCλ

Conjecture:

χ(λ) ∼ λcλ

(backed by simulations)

Is χ(λ) continuous in λ?
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Geometric Random Graphs

(Vague) definition of a Geometric Random Graph:

• vertices are random points in a metric space
(the geometry)

• probability to form an xy edge depends on distance
d(x , y ).

Examples:
[Remco Van Der Hofstad. Random graphs and complex networks. Lecture

Notes, 2013.]
[Mathew Penrose. Random Geometric Graphs. Oxford University Press,

2003.]

Random planar maps (Le Gall, Angel & Schramm,...)

Percolation ...
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Random Graphs from trees
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Random Graphs from trees

Simulations by C. Moniz.

Further examples. Here are some more random graphs Rk,n outputted by my algo-

rithm for di↵erent values of k and n:
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Figure 3: Rk,n obtained from binary trees, for di↵erent values of k and n. From top-left
to bottom-right, the values are k = 3 and n = 6, k = 3 and n = 8, k = 6 and n = 10,
k = 7 and n = 10, respectively. Drawn using Python igraph [20].

Notice that while the graph is connected for k = 3 walks on a tree of depth n = 6, it is

disconnected for k = 3 walks on a tree of depth n = 8. The example of R
3,8 illustrated in

figure 3 has 15 connected components.

One may be interested in how often the random graph obtained from this construction is

connected, for di↵erent values of k and n. In the case of n = 10, I observed (informally)

that more often than not, a graph with k = 6 would be disconnected and a graph with

k = 7 walkers would be connected. Some examples of this are illustrated in figure 3.
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Long Range Percolation on Z

Long Range Percolation:

A random graph with vertex set Z, where the number of
xy -edges has distribution

Po(
λ

|x − y |s
).

Theorem (Newman & Schulman, Aizenman & Newman ’86)
In long range percolation on Z, percolation occurs for large
enough λ iff s ≤ 2.
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Percolation model

Bernoulli bond percolation on
an infinite graph, i.e.

Each edge
-present with probability p,

and
-absent with probability 1 − p

independently of other edges.

Percolation threshold:

pc := sup{p | Pp( component of o is infinite ) = 0}
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Historical remarks on percolation theory

Classical era:
Introduced by physicists Broadbent & Hammersley ’57

pc(square grid) = 1/2 (Harris ’59 + Kesten ’80)

Many results and questions on phase transitions, continuity,
smoothness etc. in the ’80s:
Aizenman, Barsky, Chayes, Grimmett, Hara, Kesten, Marstrand,
Newman, Schulman, Slade, Zhang ... (apologies to many!)

Thought of as part of statistical mechanics
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Historical remarks on percolation theory

Modern era:
Benjamini & Schramm ’96 popularised percolation on groups
‘beyond Zd ’

... for example, percolation can characterise amenability:

Theorem (⇐ Aizenman, Kesten & Newman ’87,
⇒ Pak & Smirnova-Nagnibeda ’00)

A finitely generated group is non-amenable iff it
has a Cayley graph with pc < pu.

See the textbooks [Lyons & Peres ’15], [Pete ’18+] for more.
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Back to classics: analyticity below pc

χ(p) := Ep(|C(o)|),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)
χ(p) is an analytic function
of p for p ∈ [0,pc) when G is a lattice in Rd .

Proved by extending p and χ(p) to the complex numbers, and
using classical complex analysis (Weierstrass).
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Some complex analysis basics

Theorem (Weierstrass): Let f =
∑

fn be a series of analytic
functions which converges uniformly on each compact subset
of a domain Ω ⊂ C. Then f is analytic on Ω.

Weierstrass M-test: Let (fn) be a sequence of functions such
that there is a sequence of ‘upper bounds’ Mn satisfying

|fn(z)| ≤ Mn,∀x ∈ Ω and
∑

Mn < ∞.

Then the series
∑

fn(x) converges uniformly on Ω.

Theorem (Aizenman & Barsky ’87)
In every vertex-transitive percolation model,

Pp(|C | > n) ≤ c−n
p ,

for every p < pc and some cp > 1.
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Conjectures on the percolation probability

θ(p) := Pp(|C | = ∞),
i.e. the percolation probability.

148 Geoffrey Grimmett

θ(p)

1

pc 1 p

Fig. 1.1. It is generally believed that the percolation probability θ(p) behaves
roughly as indicated here. It is known, for example, that θ is infinitely differen-
tiable except at the critical point pc. The possibility of a jump discontinuity at pc

has not been ruled out when d ≥ 3 but d is not too large.

1.2 Some Possible Questions

Here are some apparently reasonable questions, some of which turn out to be
feasible.

• What is the value of pc?
• What are the structures of the subcritical and supercritical phases?
• What happens when p is near to pc?
• Are there other points of phase transition?
• What are the properties of other ‘macroscopic’ quantities, such as the

mean size of the open cluster containing the origin?
• What is the relevance of the choice of dimension or lattice?
• In what ways are the large-scale properties different if the states of

nearby edges are allowed to be dependent rather than independent?
There is a variety of reasons for the explosion of interest in the percolation

model, and we mention next a few of these.
• The problems are simple and elegant to state, and apparently hard to

solve.
• Their solutions require a mixture of new ideas, from analysis, geometry,

and discrete mathematics.
• Physical intuition has provided a bunch of beautiful conjectures.
• Techniques developed for percolation have applications to other more

complicated spatial random processes, such as epidemic models.
• Percolation gives insight and method for understanding other physical

models of spatial interaction, such as Ising and Potts models.
• Percolation provides a ‘simple’ model for porous bodies and other

‘transport’ problems.
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θ(p) analytic?

Open problem:
Is θ(p) analytic for p > pc?

Appearing in the textbooks Kesten ’82, Grimmett ’96,
Grimmett ’99.
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Our results (G & Panagiotis ’18+)

θ etc. analytic for p > pc on regular trees.
–trivial for binary tree, but what about higher degrees?

pc = pC on all planar lattices. –previously open for all graphs;
C∞ known for Zd

pc = pC for continuum percolation in R2.
–asked by Last et.al ’16; C∞ known
pC < 1 on all finitely presented Cayley graphs.
–proved for Zd by Braga et.al. ’02
pC < 1 on all non-amenable graphs.
n-point functions τ, τf analytic for p > pc on all planar
lattices.
– Braga et.al. ’04 prove analyticity near p = 1 for Zd

pC ≤ 1/2 on certain families of triangulations.
– progress on questions of Benjamini & Schramm ’96, and
Benjamini ’16.
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Our results (G & Panagiotis ’18+)

θ etc. analytic for p > pc on regular trees.
–trivial for binary tree, but what about higher degrees?
pc = pC on all planar lattices. –previously open for all graphs;
C∞ known for Zd

pc = pC for continuum percolation in R2.
–asked by Last et.al ’16; C∞ known
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θ(p) analytic?

Open problem:
Is θ(p) analytic for p > pc?

‘it is a well-known problem of debatable interest...’
–Grimmett ’99

‘...this in not just an academic matter. For instance, there are
examples of disordered systems in statistical mechanics that
develop a Griffiths singularity, i.e., systems that have a phase
transition point even though their free energy is a C∞ function.’
–Braga, Proccaci & Sanchis ’02
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Partitions of n

Theorem (Hardy & Ramanujan 1918)
The number of partitions of the integer n is of order

exp(
√

n).

Elementary proof: [P. Erdös, Annals of Mathematics ’42]
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Finitely presented Cayley graphs

Theorem: pC < 1 for every finitely presented Cayley graph.

Similar arguments, but we had to generalise separating curves
to all graphs.

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis



Outlook

Is the expected size of the asynchronous mafia finite?
Find other mafia-type rules with an invariant distribution
Find other geometric random graphs that coincide with
percolation on a group
Prove pC = pc in higher dimensions
Extend your parameter to C

Further reading:
[H. Duminil-Copin, Sixty years of percolation]
[H. Duminil-Copin & V. Tassion, A new proof of the sharpness of the phase

transition for Bernoulli percolation on Zd ]

These slides are on-line
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