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Finite Cycles are not Enough

Theorem (Thomassen)

Every finite (k + 3)-connected graph contains a cycle C such
that G − C is k-connected.
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?
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Tutte’s Theorem

Theorem (Tutte ’56)
Every finite 4-connected planar graph has a
Hamilton cycle

Theorem (Yu ’05)
Every locally finite 4-connected planar
3-indivisible graph has a spanning double
ray
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Fleischner’s Theorem

Theorem (Fleischner ’74)
The square of a finite 2-connected graph has a
Hamilton cycle

Theorem (Thomassen ’78)
The square of a locally finite 2-connected
2-indivisible graph has a spanning double ray
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Infinite Cycles
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Ends

end: equivalence class of rays
two rays are equivalent if no finite vertex set separates them

......

two ends

one end

... ... ... ...... ... ... ...

2ω many ends
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The Freudenthal Compactification
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Infinite cycles

Circle:
A homeomorphic image of S1 in |G|.
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Infinite cycles

Circle:
A homeomorphic image of S1 in |G|.

Hamilton circle:
a circle containing all vertices
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Fleischner’s Theorem for Locally Finite Graphs

Theorem (G ’06)
The square of a locally finite 2-connected
graph has a Hamilton circle
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Fleischner’s Theorem for Locally Finite Graphs

Euler tour: A continuous image from S1 to |G| traversing each
edge exactly once.

Theorem (G ’06)
If a locally finite graph has an Euler tour then it
also has one visiting each end exactly once.
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The Cycle Space of a Finite Graph

C(G)

A vector space over Z2

Consists of sums of circuits
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The Cycle Space of an Infinite Graph

Theorem (Tutte)

If G is 3-connected then its peripheral circuits generate C(G)

peripheral: induced and non-separating
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The Cycle Space of an Infinite Graph

Theorem (Tutte)

If G is 3-connected then its peripheral circuits generate C(G)

peripheral: induced and non-separating
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The Cycle Space of an Infinite Graph

Theorem (Tutte)

If G is 3-connected then its peripheral circuits generate C(G)

peripheral: induced and non-separating

C

D
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The Cycle Space of an Infinite Graph

C(G): all thin sums of circuits, i.e. edge sets of circles
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The Cycle Space of an Infinite Graph

Known facts:
Every C ∈ C(G) is a disjoint union of
circuits
The fundamental circuits of a spanning
tree generate C(G)

C ∈ C(G) iff C meets every cut evenly
A connected graph is eulerian iff every
vertex has even degree
G is planar iff C(G) has a simple
generating set
If G is 3-connected then its peripheral
circuits generate C(G)

The geodesic cycles generate C(G)

Generalisations:

Diestel & Kühn

Diestel & Kühn

Diestel & Kühn

Bruhn & Stein

Bruhn

Bruhn & Stein

G & Sprüssel
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Extremal Graph Theory

Theorem (Mader)
If G has average degree at least 4k then it has a
(k + 1)-connected subgraph

Theorem (Stein)
If each vertex of G has degree at least 2k and each end has
edge-degree at least 2k then G has a (k + 1)-edge-connected
region.

Vertex version also exists
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Other Problems

Problem
Is every (topologically) connected subspace of |G|
path-connected?

Theorem (G ’04)
No.
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Open Problems

Problem
If G is (k + 3)-connected, does |G| contain a circle C such that
G − C is k-connected?

Problem
Are there connected (non-locally-finite) graphs G such that |G|
has no topological spanning tree?

Problem

Is G3 hamiltonian for every connected countable graph G?

Problem

If Gk is hamiltonian, is Gk+1 also hamiltonian?
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Your To Do List

read Diestel’s expository paper
The cycle space of an infinite graph
or Chapter 8.5. of The Book
visit the project’s webpage:
http://www.math.uni-hamburg.de
/home/diestel/papers/TopGrProject.html
read the proof that if G is connected then G3 is hamiltonian
in
Infinite hamilton cycles in squares of locally finite graphs
solve some of the open problems
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