Infinite Cycles in Graphs

Agelos Georgakopoulos

Mathematisches Seminar Universität Hamburg

Finite Cycles are not Enough

Theorem (Thomassen)

Every finite (k + 3)-connected graph contains a cycle C such that G - C is k-connected.

What is an infinite cycle?

Tutte's Theorem

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

Theorem (Yu '05)

Every locally finite 4-connected planar 3-indivisible graph has a spanning double ray

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected 2-indivisible graph has a spanning double ray

Infinite Cycles

Ends

end: equivalence class of rays two rays are equivalent if no finite vertex set separates them

The Freudenthal Compactification

The Freudenthal Compactification

The Freudenthal Compactification

Infinite cycles

Circle:

A homeomorphic image of S^1 in |G|.

Infinite cycles

Circle:

A homeomorphic image of S^1 in |G|.

Hamilton circle:

a circle containing all vertices

Infinite cycles

Circle:

A homeomorphic image of S^1 in |G|.

Fleischner's Theorem for Locally Finite Graphs

Theorem (G '06)

The square of a locally finite 2-connected graph has a Hamilton circle

Fleischner's Theorem for Locally Finite Graphs

Euler tour: A continuous image from S^1 to |G| traversing each edge exactly once.

Theorem (G '06)

If a locally finite graph has an Euler tour then it also has one visiting each end exactly once.

$\mathcal{C}(G)$

- A vector space over Z₂
- Consists of sums of circuits

Theorem (Tutte)

If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$

peripheral: induced and non-separating

Theorem (Tutte)

If G is 3-connected then its peripheral circuits generate C(G)

peripheral: induced and non-separating

Theorem (Tutte)

If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$

peripheral: induced and non-separating

 $\mathcal{C}(G)$: all thin sums of circuits, i.e. edge sets of circles

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff $\mathcal{C}(G)$ has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff $\mathcal{C}(G)$ has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff $\mathcal{C}(G)$ has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Diestel & Kühn

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff $\mathcal{C}(G)$ has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Diestel & Kühn

Diestel & Kühn

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff $\mathcal{C}(G)$ has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Diestel & Kühn

Diestel & Kühn

Bruhn & Stein

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff C(G) has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Diestel & Kühn

Diestel & Kühn

Bruhn & Stein

Bruhn

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff C(G) has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Diestel & Kühn

Diestel & Kühn

Bruhn & Stein

Bruhn

Bruhn & Stein

Known facts:

- Every $C \in \mathcal{C}(G)$ is a disjoint union of circuits
- The fundamental circuits of a spanning tree generate $\mathcal{C}(G)$
- $C \in \mathcal{C}(G)$ iff C meets every cut evenly
- A connected graph is eulerian iff every vertex has even degree
- G is planar iff C(G) has a simple generating set
- If G is 3-connected then its peripheral circuits generate $\mathcal{C}(G)$
- The geodesic cycles generate $\mathcal{C}(G)$

Generalisations:

Diestel & Kühn

Diestel & Kühn

Diestel & Kühn

Bruhn & Stein

Bruhn

Bruhn & Stein

G & Sprüssel

Extremal Graph Theory

Theorem (Mader)

If G has average degree at least 4k then it has a (k + 1)-connected subgraph

Extremal Graph Theory

Theorem (Mader)

If G has average degree at least 4k then it has a (k+1)-connected subgraph

Theorem (Stein)

If each vertex of G has degree at least 2k and each end has edge-degree at least 2k then G has a (k + 1)-edge-connected region.

Vertex version also exists

Other Problems

Problem

Is every (topologically) connected subspace of |G| path-connected?

Other Problems

Problem

Is every (topologically) connected subspace of |G| path-connected?

Theorem (G '04)

No.

Problem

If G is (k + 3)-connected, does |G| contain a circle C such that G - C is k-connected?

Problem

If G is (k + 3)-connected, does |G| contain a circle C such that G - C is k-connected?

Problem

Are there connected (non-locally-finite) graphs G such that |G| has no topological spanning tree?

Problem

If G is (k + 3)-connected, does |G| contain a circle C such that G - C is k-connected?

Problem

Are there connected (non-locally-finite) graphs G such that |G| has no topological spanning tree?

Problem

Is G³ hamiltonian for every connected countable graph G?

Problem

If G is (k + 3)-connected, does |G| contain a circle C such that G – C is k-connected?

Problem

Are there connected (non-locally-finite) graphs G such that |G| has no topological spanning tree?

Problem

Is G³ hamiltonian for every connected countable graph G?

Problem

If G^k is hamiltonian, is G^{k+1} also hamiltonian?

- read Diestel's expository paper The cycle space of an infinite graph or Chapter 8.5. of The Book
- visit the project's webpage: http://www.math.uni-hamburg.de /home/diestel/papers/TopGrProject.html
- read the proof that if G is connected then G³ is hamiltonian in Infinite hamilton cycles in squares of locally finite graphs
- solve some of the open problems