Infinite Cycles in Graphs

Agelos Georgakopoulos

Mathematisches Seminar Universität Hamburg

Hamilton cycles

Hamilton cycle: A cycle containing all vertices.

Some examples:

イロト イヨト イヨト イ

프 > 프

Tutte's Theorem

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Tutte's Theorem

Theorem (Tutte '56)

Every finite 4-connected planar graph has a Hamilton cycle

Theorem (Yu '05)

Every locally finite 4-connected planar graph with at most 2 ends has a spanning double ray

イロト イポト イヨト イヨト 一座

Agelos Georgakopoulos Infinite Cycles

What is an infinite cycle?

Agelos Georgakopoulos Infi

Infinite Cycles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Agelos Georgakopoulos

Infinite Cycles

end: equivalence class of rays

two rays are equivalent if no finite vertex set separates them

Introduction Spanning Double-Rays Topological cycles The C

The Freudenthal compactification

Agelos Georgakopoulos Infinite Cycles

ヘロト 人間 とくほとくほとう

∃ 990

Introduction Spanning Double-Rays Topological cycles The C

The Freudenthal compactification

Circle: A homeomorphic image of S^1 in $|\Gamma|$.

イロン 不同 とくほう 不良 とう

-2

Circle: A homeomorphic image of S^1 in $|\Gamma|$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Circle: A homeomorphic image of S^1 in $|\Gamma|$.

Hamilton circle:

a circle containing all vertices

Agelos Georgakopoulos

Infinite Cycles

Image: A mathematical states and a mathem

코 > 코

Circle: A homeomorphic image of S^1 in $|\Gamma|$.

Hamilton circle:

a circle containing all vertices (and all ends?)

< ロ > < 同 > < 三 >

프 - 프

Circle: A homeomorphic image of S^1 in $|\Gamma|$.

프 > 프

Hamilton circle:

a circle containing all vertices (and thus also all ends).

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen '78)

The square of a locally finite 2-connected 1-ended graph has a spanning double ray.

イロト イポト イヨト イヨト 一座

Fleischner's Theorem for Locally Finite Graphs

Theorem (G '06)

The square of a locally finite 2-connected graph has a Hamilton circle

イロト イポト イヨト イヨト 一座

Introduction Spanning Double-Rays Topological cycles The C

Hamiltonicity in Groups

Problem (Lovasz '69)

Does every finite Cayley graph have a Hamilton cycle?

Agelos Georgakopoulos Infinite Cycles

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Hamiltonicity in Groups

Problem (Lovasz '69)

Does every finite Cayley graph have a Hamilton cycle?

Problem

Does every 1-ended Cayley graph have a Hamilton circle (i.e. a spanning double ray)?

イロト イポト イヨト イヨト 一座

Hamiltonicity in Groups

Problem

Prove that a Cayley graph with infinitely many ends has a Hamilton circle iff it has property A.

イロト イポト イヨト イヨト 一座

Hamiltonicity in Groups

Problem

Prove that a Cayley graph with infinitely many ends has a Hamilton circle iff it has property A.

Problem

Define property A so that the assertion above becomes true.

イロト イポト イヨト イヨト 三連

Connectednes vs. path-connectedness

Problem (Diestel)

Is every (topologically) connected subspace of |Γ| path-connected?

Connectednes vs. path-connectedness

Problem (Diestel)

Is every (topologically) connected subspace of |Γ| path-connected?

Theorem (G '04)

No.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Connectednes vs. path-connectedness

Problem (Diestel)

Is every (topologically) connected subspace of |Γ| path-connected?

Theorem (G '04)

No.

Corollary

Connectedness does not imply path-connectedness in the hypebolic compactification of a hyperbolic Cayley graph.

イロト イポト イヨト イヨト 三連

Introduction Spanning Double-Rays Topological cycles The C

The Cycle Space of a Finite Graph

$\mathcal{C}(\Gamma)$

- A vector space over Z₂
- Consists of sums of circuits

イロト イポト イヨト イヨト

-20

The Cycle Space of an Infinite Graph

Known facts:	Generalisations:
 A connected graph has an Euler tour iff every edge-cut is even 	Bruhn & Stein
 G is planar iff C(Γ) has a simple generating set 	Bruhn
 If G is 3-connected then its peripheral circuits generate C(Γ) 	Bruhn & Stein
• The geodetic cycles generate $C(\Gamma)$	G & Sprüssel

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Failure in "continuous" problems

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph Γ generate $\mathcal{C}(\Gamma)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Failure in "continuous" problems

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph Γ generate $C(\Gamma)$

... but only if the lengths of the edges respect $|\Gamma|$.

イロト イポト イヨト イヨト 一座

Failure in "continuous" problems

Theorem (G & Sprüssel)

The geodetic circles of a locally finite graph Γ generate $C(\Gamma)$

... but only if the lengths of the edges respect $|\Gamma|$.

Similarly:

Theorem (G)

In a locally finite electrical network the circles also satisfy Kirchhoff's 2nd law if the lengths (i.e. the resistances) of the edges respect $|\Gamma|$.

イロト イポト イヨト イヨト

Assign lengths $\ell : E(\Gamma) \to \mathbb{R}^+$

Assign lengths $\ell : E(\Gamma) \to \mathbb{R}^+$

 \longrightarrow distance function d_{ℓ}

Agelos Georgakopoulos Infinite Cycles

 $\ell - TOP$

Assign lengths $\ell : E(\Gamma) \to \mathbb{R}^+$

 \longrightarrow distance function d_{ℓ}

Let ℓ – *TOP*(Γ) be the completion of (Γ , d_{ℓ}).

 $\ell - TOP$

Assign lengths $\ell : E(\Gamma) \to \mathbb{R}^+$

 \longrightarrow distance function d_{ℓ}

Let ℓ – *TOP*(Γ) be the completion of (Γ , d_{ℓ}).

Theorem (G)

If
$$\sum_{e \in E(\Gamma)} \ell(e) < \infty$$
 then $\ell - TOP(\Gamma) = |\Gamma|$.

 $\ell - TOP$

Assign lengths $\ell : E(\Gamma) \to \mathbb{R}^+$

 \longrightarrow distance function d_{ℓ}

Let ℓ – *TOP*(Γ) be the completion of (Γ , d_{ℓ}).

Theorem (G)

In a locally finite electrical network the circles in $\ell-$ TOP satisfy Kirchhoff's 2nd law.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction Spanning Double-Rays Topological cycles The

Your 'To Do' List

 read Diestel's expository paper The cycle space of an infinite graph or Chapter 8.5. of Diestel's book;

くロト (過) (目) (日)

Introduction Spanning Double-Rays Topological cycles The C

Your 'To Do' List

- read Diestel's expository paper The cycle space of an infinite graph or Chapter 8.5. of Diestel's book;
- visit the project's webpage: http://www.math.uni-hamburg.de /home/diestel/papers/TopGrProject.html;

くロト (過) (目) (日)

Introduction Spanning Double-Rays Topological cycles The

Your 'To Do' List

- read Diestel's expository paper The cycle space of an infinite graph or Chapter 8.5. of Diestel's book;
- visit the project's webpage: http://www.math.uni-hamburg.de /home/diestel/papers/TopGrProject.html;
- read the proof of

Theorem (G '06)

If Γ is a locally finite connected graph then $|\Gamma^3|$ has a Hamilton circle.

in G: "Infinite hamilton cycles in squares of locally finite graphs", Preprint 2007;

イロト イポト イヨト イヨト 三日

Your 'To Do' List

- read Diestel's expository paper The cycle space of an infinite graph or Chapter 8.5. of Diestel's book;
- visit the project's webpage: http://www.math.uni-hamburg.de /home/diestel/papers/TopGrProject.html;
- read the proof of

Theorem (G '06)

If Γ is a locally finite connected graph then $|\Gamma^3|$ has a Hamilton circle.

in G: "Infinite hamilton cycles in squares of locally finite graphs", Preprint 2007;

ヘロト 人間 ト ヘヨト ヘヨト

• solve some of the open problems.