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How Mafia’s grow

A network evolves in (continuous or discrete) time with the
following rules:

When a (Poisson) clock ticks, nodes split into two;
When a node x splits into two nodes x ′, x ′′, each of its
existing edges gets inherited by x ′ or x ′′ independently
with probability 1/2;
Moreover, a Poisson(k)-distributed number of new edges
are added between x ′ and x ′′.

As time goes to infinity, the distribution of the component
(mafia) of a designated vertex converges.

Is the component in the limit distribution finite or infinite?
If it is finite, is its expected size finite or infinite?

If finite, how does it depend on k?
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Random Graphs from trees

R1
3(T )
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Random Graphs from trees

Simulations by C. Moniz.

Further examples. Here are some more random graphs Rk,n outputted by my algo-

rithm for di↵erent values of k and n:
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Figure 3: Rk,n obtained from binary trees, for di↵erent values of k and n. From top-left
to bottom-right, the values are k = 3 and n = 6, k = 3 and n = 8, k = 6 and n = 10,
k = 7 and n = 10, respectively. Drawn using Python igraph [20].

Notice that while the graph is connected for k = 3 walks on a tree of depth n = 6, it is

disconnected for k = 3 walks on a tree of depth n = 8. The example of R
3,8 illustrated in

figure 3 has 15 connected components.

One may be interested in how often the random graph obtained from this construction is

connected, for di↵erent values of k and n. In the case of n = 10, I observed (informally)

that more often than not, a graph with k = 6 would be disconnected and a graph with

k = 7 walkers would be connected. Some examples of this are illustrated in figure 3.
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The Poisson integral representation formula

The classical Poisson formula

h(z) =
∫ 1

0
ĥ(θ)P(z, θ)dθ

=

∫ 1

0
ĥ(θ)dνz(θ)

where P(z, θ) := 1−|z |2

|e2πiθ−z |2 ,
recovers every continuous harmonic
function h on D from its boundary
values ĥ on the circle ∂D.
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The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a (Lebesgue-Rohlin) measurable space (PG,Σ), and

- a family of probability measures {νz , z ∈ VG},
such that

every bounded harmonic function h can be obtained by

h(z) =
∫
PG

ĥ(η)dνz(η)

this ĥ ∈ L∞(PG) is unique up to modification on a null-set;
conversely, for every ĥ ∈ L∞(PG) the function
z 7→

∫
PG

ĥ(η)dνz(η) is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry
between the Banach spaces H∞(G) and L∞(PG).
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The Poisson-Furstenberg boundary

Selected work on the Poisson boundary

Introduced by Furstenberg to study semi-simple
Lie groups [Annals of Math. ’63]
Kaimanovich & Vershik give a general criterion using the
entropy of random walk [Annals of Probability ’83]
Kaimanovich identifies the Poisson boundary of hyperbolic
groups, and gives general criteria [Annals of Math. ’00]
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A nice property

Proposition
For every two measurable

subsets X ,Y of the Poisson (or
Martin) boundary ∂G,

E(] edges xy in Rn

with x ‘close to’ X
and y ‘close to’ Y )

converges.

We use the limit to define a measure on ∂G × ∂G via

C(X ,Y ) := limE(] edges ...)
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Energy and Douglas’ formula

The classical Douglas formula [Douglas ’31]

E(h) =
∫ 2π

0

∫ 2π

0
(ĥ(η) − ĥ(ζ))2Θ(ζ, η)dηdζ

calculates the (Dirichlet) energy of a
harmonic function h on D from its
boundary values ĥ on the circle ∂D.
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Energy in finite electrical networks

a

b

a

b

Cab

E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab,

Compare with Douglas: E(h) =
∫ 2π
0

∫ 2π
0 (ĥ(η) − ĥ(ζ))2Θ(ζ, η)dηdζ

How can we generalise this to an arbitrary domain?
To an infinite graph?
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Effective conductance

We call C the effective conductance measure, because

Theorem (G & V. Kaimanovich ’12-’17+)
For every locally finite network G, and every harmonic
function h, we have

E(h) =
∫
∂G×∂G

(̂
h(η) − ĥ(ζ)

)2
dC(η, ζ).

History: Douglas ’31, Naim ’57, Doob ’62, Silverstein ’74

Finite version: E(h) =
∑

a,b∈B (h(a) − h(b))2 Cab

a

b

a

b

Cab

Agelos Georgakopoulos



The Naim Kernel

Doob’s formula:

E(h) = q
∫
M2

(ĥ(η) − ĥ(ζ))2Θ(ζ, η)dµoηdµoζ,

for h fine-continuous quasi-everywhere [Doob ’62]. Analogous
formula for graphs: [Silverstein ’74].

where the Naim Kernel Θ is defined as

Θ(ζ, η) := lim
zn→ζ,yn→η

G(zn, yn)
G(zn,o)G(o, yn)

... in the fine topology [Naim ’57].
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Convergence of the Naim Kernel

Θ(ζ, η) := lim
zn→ζ,yn→η

G(zn, yn)
G(zn,o)G(o, yn)

Problem: Let (zi )i∈N and (yi )i∈N be independent simple random
walks from o. Then limn,m→∞Θ(zn, ym) exists almost surely.
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Random Interlacements and C

Random Interlacements I [Sznitman]:

• A Poisson point process whose ‘points’ are 2-way infinite
trajectories

• applied to study the vacanct set on the discrete 3D-torus
• governed by a certain σ-finite measure ν

Theorem (G & Kaimanovich ’17+)
For every transient, locally finite graph G,

C(X ,Y ) = ν(1XY W ∗).
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Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman & Schulman, Aizenman & Newman ’86)

In long range percolation on Z, with parameters e−λ/|x−y |s ,
percolation occurs for large enough λ if s ≤ 2.

Rλn(Z2) converges (a la Benjamini-Schramm) to an instance Rλ∞
of this (with s = 2) as n → ∞.

But Rλ∞(Tree) does not percolate for any λ!

How large is Rλ∞(T )?
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The expected size of the TWRG

Let Cλo denote the component of a uniformly random vertex of
Rλn(T ) (or Rλ∞(T )).

Theorem (G & Haslegrave, state of the art 2/17)

Aeaλ ≤ E(|Cλo |) ≤ Beebλ
.

Conjecture:
E(|Cλo |) ∼ λ

λ

(backed by simulations)
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Outlook

Understand TWRGs
Interplay between the host group Γ and its GWRGs
Let Γ act on C and see what happens

Thank you!

These slides are on-line.

Agelos Georgakopoulos



Outlook

Understand TWRGs

Interplay between the host group Γ and its GWRGs
Let Γ act on C and see what happens

Thank you!

These slides are on-line.

Agelos Georgakopoulos



Outlook

Understand TWRGs
Interplay between the host group Γ and its GWRGs

Let Γ act on C and see what happens

Thank you!

These slides are on-line.

Agelos Georgakopoulos



Outlook

Understand TWRGs
Interplay between the host group Γ and its GWRGs
Let Γ act on C and see what happens

Thank you!

These slides are on-line.

Agelos Georgakopoulos



Outlook

Understand TWRGs
Interplay between the host group Γ and its GWRGs
Let Γ act on C and see what happens

Thank you!

These slides are on-line.

Agelos Georgakopoulos



Outlook

Understand TWRGs
Interplay between the host group Γ and its GWRGs
Let Γ act on C and see what happens

Thank you!

These slides are on-line.

Agelos Georgakopoulos


