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This talk is an exposition of the main steps in the paper
Mo,n is not a Mori Dream Space

by Ana-Maria Castravet and Jenia Tevelev.
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https://arxiv.org/abs/1311.7673

Definition of Mori Dream Spaces.
Examples and non-examples.

Blow-up presentation of the Losev-Manin spaces LM ,,.
Blow-up presentation of the spaces M.

(Goto, Nishida, Watanabe)
The blow-up of P(25,72,29) at the point [1,1,1] is not a Mori

Dream Space.

Putting it all together.
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In many of the previous talks in this seminar, the modular
interpretation of the spaces of stable curves of genus 0 and n-marked
points played a fundamental role.

We also saw how to extend/weaken the conditions to obtain the
Hassett spaces with their modified modular interpretation.

This allowed us to view the Losev-Manin spaces as different, but
related, compactifications of My .
In this talk, the modular interpretation plays a virtually inexistent role.

We work directly with presentations of My, and of the Losev-Manin
spaces LM, as blow-ups of projective spaces.
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Mori Dream Spaces (MDS)

A normal projective variety X is called a Mori Dream Space (MDS) if
the following conditions hold:

@ X is Q-factorial and Pic(X)g ~ N'(X)g;

@ Nef(X) is generated by finitely many semiample line bundles;
@ there is a finite collection of small Q-factorial modifications
{fi X ==+ Xi}ieq,...ry such that

o for each i € {1,...,r}, X; satisfies (1) and (2), and
o Mov(X) coincides with the union J, f; Nef(X;).

The actual definition will not play a big role in this talk.
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Mori Dream Spaces (MDS)

A normal projective variety X is called a Mori Dream Space (MDS) if
the following conditions hold:

© x is Qfactoril and | NN

@ Nef(X) is generated by finitely many semiample line bundles;
@ there is a finite collection of _
{fi+ X - Xi}ieq1,...r) such that

o for each i € {1,...,7}, X, satisfies (1) and (2), and
e Mov(X) coincides with the union J, f; Nef(Xj;).

The actual definition will not play a big role in this talk.

Mori Dream Spaces are finitely generated in some sense.

crop up sometimes.
If you do not know what they are, think about
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Properties of Mori Dream Spaces

Let X,Y be smooth! projective varieties.
o The image of a MDS is a MDS:
if X — Y is a dominant morphism, then

X is a MDS =Y is a MDS.

e Small Q-factorial modifications preserve MDSs:

if X is a small Q-factorial modification of Y, then

X isa MDS <= Y is a MDS.

For this talk, the second property is only useful if you know what it
means.

'normal and Q-factorial is enough.
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A toric variety is a Mori Dream Space.

Thus, (weighted) projective spaces P" (or P(ag,ar,...,a)),
products of such (weighted) projective spaces, are all MDS.

SR RRRREIET] v coric varictis and hence are [SIDS)

- have a tendency of messing up Mori Dream Spaces.

For n > 5, the space - is [l6fl a toric variety.

From now on, we concentrate on -, - and P(a,b,c) .
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Losev-Manin spaces and M, — Blow ups

Let e1,...,ep_a € P73 be the n — 2 coordinate points

er = [1,0,0,...,0,0],
es = [0,1,0,...,0,0],

en—2 = [0,0,0,...,0,1],
and let e € P"~3 be the point

e = [1,1,...,1].
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Losev-Manin spaces and My, — Blow ups

Start with P73,

of points eq,...,e, 9.

Losev-Manin LM, Mo
e Blow up the points eq,...,€e,_9. o ...and e.
o Blow up the strict transforms of the lines ° ...
through the points eq,...,e,_2. and e .
o Blow up the strict transforms of the planes ° ...
connecting all triples of points eg,..., e, 9. and e .
@ Blow up the strict transforms of the °
(n — 4)-planes connecting all (n — 3)-tuples and e .
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Losev-Manin spaces and »n — Blow ups

LM 5 ~ Blg pts P2 LM ~ Blg pts + 6 lines P>

AT ~ 2 T ~ .
Mos ~ Bly pis P Mo 6 =~ Bls pts + 10 Tines P°
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Losev-Manin spaces and Mg, — Simplices

@ 2-simplex ®

[ ]
/ \ o
@ 2-simplex ® 3-simplex
with barycenter with barycenter

LM5 =~ B13 pts IP)2 LMG =~ Bl4 pts + 6 lines ]P3

T T

AT ~ 2 T ~Y .
Mos >~ Bly pis P Mo =~ Bls pts + 10 Tines P°
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‘ 2-simplex

with barycenter

LM ~ Blg ps P?

;

MO,E) = B14 pts PQ

@ 2-simplex

3-simplex
with barycenter

LM ~ Bly pts + 6 lines P3

—
—
—
—

— 5
Mo, =~ Bls pts + 10 lines P
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Sequences

Denote by e = [1,1,...,1] the barycenter of the standard simplex.

LMs5 LMg LM, LM,
j r” - j = j L - /7T
Mo s Mog Mo, Mon+t1

LM 1 --+ Mo, — Ble LM,

LM, 41 — My, — Blo LM,

where LM ;1 is® Ble LM, 41.

2a small Q-factorial projective modification of

Damiano Testa Mg, seminar



Sequences

The sequence

LM, 41 — My, — Blo LM,

gives the implications:

e if My, is a MDS, then Ble LM,, is a MDS;

o if Blg LM, is a MDS, then Mo,n is a MDS.

Recall that EM,LH is® Ble LMpy.

3a small Q-factorial projective modification of
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Recurring question

Let X be a toric variety and let e € X be a point contained in the
open torus orbit. Denote by Ble X the blow-up of X at the point e.

Question
When is Ble X a Mori Dream Space?

—

Imprecisely, “When is the blow-up of a toric variety a MDS?”

It does not matter which point e in the open orbit we choose. \

(Why?)
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Spoiler

Let X be a toric variety and let e € X be a point contained in the
open torus orbit. Denote by Ble X the blow-up of X at the point e.

Question
When is Ble X a Mori Dream Space?

Example (Goto, Nishida, Watanabe)

Over a field of characteristic zero, the surface Ble P(25,72,29) is not a
MDS.

If there is time, ask me about this result.
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The summary so far

e For every n > 3 there are morphisms
LM, 41 — Mg, — Ble LM,.

e The surface Ble P(25,72,29) is not a MDS.

A morphism: Ble LM 134 — Ble IP(25, 72, 29).

With this, we conclude that MO7134 is not a MDS.

Using the small Q-factorial stuff, this also proves that, for n > 134, the
space Mo,n is not a MDS.
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A morphism Ble LM 34 — Bl P(25, 72, 29)

To construct the missing morphism

Ble LM 134 — Blg P(25,72,29)

we first compare the toric data of P(a, b, c) and of LM, for general
choices of a, b, ¢ and n.
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Toric data for P(a, b, ¢)

Let a,b,c € N be pairwise coprime.
Let f1, fo, f3 € R? be three vectors spanning R? and satisfying

afi +bfs+cf3 =0.

/ aﬁ+bg+c@=0

The vectors f1, fo, f3 span the extremal rays of the fan associated to
the toric variety P(a, b, c).
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Toric data for LM,

Let eq,...,en_3 be a basis of R*™3 and set e,_o = —(e1+ -+ en_3).
Let N C R"3 be the lattice spanned by the vectors e, ..., e,_2.
The extremal rays of the fan associated to LM, are the rays spanned

by the primitive vectors

Zei, for all subsets I C {1,...,n—2} with 1 < |I| <n —3.

The higher dimensional cones of the fan correspond to higher
codimensional torus-stable subvarieties of LM ,: we need not worry
about them, due to the small Q-factorial stuff.
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Given a,b,c € N, set

n=(a+2)+0b+2)+(c+2)+2=a+b+c+8.

Toric variety | P(a,b, c)
Lattice Z-span{f1, fo, f3} [ (afy + bfa + cfs) = 72
Rays f17 f27 f3

Toric variety | LM,

Lattice Z-span{ey, . .. ,€n_2}/(€1 +den o) 23

Rays all non-zero sums of the vectors ey, ..., e, o
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Given a,b,c e N;set n —2=(a+2)+ (b+2)+ (c+2).
Partition S = {e1,...,ep—2} = S1 U S2 LU S3 in three parts, with
]Sl|:a+2 ‘SQ’Zb—i-Q ’53’264-2.

Fix €n, € S1, €ny € S9, €ny € S3.

Define a linear map Z-span S — Z-span{ f1, fo, f3}
by assigning to each vector e € §

o s fi, ifee€sS;, e#ey,,
—fi, ife:em,

and extending linearly. The kernel of such map is generated by

{e+eni |i€{1,2,3} and e € S; \ {em}}.

3
The relation Z e= Z Z e—afi +bfo+cfs holds.
ecS i=1 eESni
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We obtain a homomorphism of lattices
lattice of LM, — lattice of P(a, b, ¢)
where

lattice of LM,, = Z-span{ei,...,en—2}/(e1+ -+ en_2)
lattice of P(a,b,¢) = Z-span{fi, fo, f3}/(af1 + bf2+ cf3).

This induces a rational maps
LM, --+P(a,b,c) and Ble LM, --+ Ble P(a, b, c).

Using some slightly involved lattice-theoretic reasoning, this is enough
to prove the implication

Ble P(a, b, ¢) is not a MDS = Ble LM, is not a MDS.
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Conclusion

Summarizing, there are maps

Mo,n — Ble LM, and Ble LM, --+ Ble P(a, b, c),
wheren =a+b+c+8.

The blow-up Ble P(25,72,29) is not a Mori Dream Space.
Since 25+ 72 4+ 29 + 8 = 134, neither Ble LM 34 is a Mori Dream Space.

Finally, Mg 134 is not a Mori Dream Space.
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Thank you!!

Questions?




