
SECOND LECTURE: RATIONAL POINTS ON K3 SURFACES

DAMIANO TESTA

Abstract. Among the surfaces of vanishing Kodaira dimension, K3 surfaces play a
very special role; many basic questions are known and many are still unknown. First,
I will discuss the general method for computing Picard groups of surfaces with an
emphasis on K3 surfaces appearing in the paper [vL07] of R. van Luijk. Then, I will
talk about joint work with Michela Artebani and Antonio Laface on a specific K3 surface
arising from a problem studied by Büchi.

1. K3 surfaces

A K3 surface is a surface X defined over the field k having trivial canonical line bundle
and vanishing H1(X,OX).

It is quite easy to write down explicit examples of K3 surfaces:

• double covers of P2 branched over a plane sextic;
• quartic surfaces in P3;
• intersections of a quadric and a cubic in P4;
• intersections of three quadrics in P5;

are all K3 surfaces. Moreover, the only K3 surfaces that are complete intersections in
projective space are contained in the list above.

Exercise 1. Let X be a smooth projective surface and denote by KX a canonical divisor
on X. If D is a divisor on X such that KX ·D = 0, show that D2 is even.
[Hint: use the adjunction formula.]

It follows from Exercise 1 that the square of every ample line bundle on a K3 surface
is even; for the class of a hyperplane in the examples mentioned above, the squares are
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2, 4, 6 and 8. An ample divisor of degree 2 presents a K3 surface as a double cover of P2

branched over a plane sextic. A polarization of a K3 surface X is a choice of an ample line
bundle A on X and the degree of the polarization is the square of the ample line bundle
A. Every positive even integer is the degree of an ample divisor on some K3 surface.
There are infinitely many irreducible components in the moduli space of K3 surfaces,
each corresponding to a possible degree of a polarization: the families mentioned above
correspond to the components of K3 surfaces with a polarization of degree 2, 4, 6 or 8.

1.1. Hodge diamond. Let X be a smooth projective variety over a field k and let ΩX

denote the sheaf of Kähler differentials on X (this is the sheaf of holomorphic 1-forms
if X is defined over the complex numbers); for a non-negative integer q define the sheaf
Ωq

X =
∧q ΩX to be the sheaf of holomorphic q-forms on X. The Hodge diamond of X

consists of the dimensions hp,q(X) of the cohomology groups Hq(X,Ωp
X); to simplify the

notation, if F is a coherent sheaf on X and i is an integer, we denote the dimension of
the cohomology group Hi(X,F ) by hi(X,F ) or even by hi(F ) when the variety X is
clear from the context.

If X is a surface, the sheaf Ω2
X is isomorphic to the dualizing sheaf ωX and the Hodge

diamond of X takes the form

h2(ωX)

h1(ωX) h2(ΩX)

h0(ωX) h1(ΩX) h2(OX)

h0(ΩX) h1(OX)

h0(OX)

The Hodge diamond is symmetric with respect to a rotation of 180◦ by Serre duality;
over a field of characteristic zero, the reflection across the vertical axis is also a symmetry
of the Hodge diamond by Hodge theory. Since the surface X is connected, the identity
h0(OX) = 1 holds; classically the number pg = h0(ωX) is called the geometric genus
of X and the number q = h1(OX) is called the irregularity of X. Thus, over fields of
characteristic zero, we can rewrite the Hodge diamond as

1
q q

pg h1,1(X) pg

q q

1

If X is a K3 surface, the irregularity q vanishes and the geometric genus pg equals 1, since
the canonical line bundle is trivial. To conclude the computation of the Hodge diamond,
we still need to compute h1,1(X): from Noether’s formula we can deduce that the Euler



SECOND LECTURE: RATIONAL POINTS ON K3 SURFACES 3

characteristic of a K3 surface is 24 and hence the Hodge diamond is

1
0 0

1 20 1
0 0

1

In order to give an upper bound for the Picard number of a K3 surface, I will use a few
features of étale cohomology: I will use more étale cohomology later, and I will mention
the relevant properties as I need them. Étale cohomology groups are replacements of
singular cohomology groups for varieties defined over fields different from the complex
numbers, including fields of positive characteristic; in fact, they were initially constructed
with the goal of proving the Weil conjectures for varieties over finite fields. If the field
k is the field of complex numbers, then there are comparison theorems between étale
and singular cohomology showing that the correspoding étale and singular cohomology
groups are vector spaces of the same dimensions; moreover, étale cohomology groups
are functorial in the same way that singular cohomology is functorial: systematically
replacing étale cohomology groups with the corresponding singular cohomology groups
provides a good geometric intuition for étale cohomology groups. On the other hand,
étale cohomology groups for varieties in positive characteristic have something more, that
we will see and exploit later: they admit an action of the Frobenius endomorphism. If X
is a variety defined over a finite field F, the Frobenius endomorphism is the key to relate
the number of points of X over the finite extensions of F with the (étale) Betti numbers
of X.

Fix a prime number ` different from the characteristic of the ground field k: this is part
of the construction of the étale cohomology groups, and the final output is essentially
independent of the choice of the prime `. The Picard group of a K3 surface over a field k
is a sublattice of the étale cohomology group H2

ét(X,Q`); since the latter has dimension
22, it follows that the Picard number of a K3 surface is at most 22. Over the complex
numbers (and hence over fields of characteristic zero), the Hodge decomposition implies
that the Picard group of X is a sublattice of the vector space h1,1(X) and hence we
obtain a smaller bound of 20 for the Picard number of a K3 surface: this bound is in
general incorrect for K3 surfaces over fields of positive characteristic, and a K3 surface
with Picard number 22 is called supersingular .

1.1.1. Kummer surfaces. There is a classical construction of K3 surfaces starting with a
principally polarized abelian variety of dimension two. Since I do not want to get into the
details of what is a principal polarization of an abelian variety, I will simply start with
a smooth projective curve C of genus two and let JC denote the Jacobian variety of C.
The variety JC is an example of a principally polarized abelian surface (and, except for
product of two elliptic curves, every principally polarized abelian surface is of this form).
The surface JC admits an action of the group {±1} induced by taking the inverse ι in



4 DAMIANO TESTA

the group law of JC. The quotient JC/〈ι〉 is a projective surface and it has 16 double
points corresponding to the 16 two-torsion points of JC. Each singular point is a singular
point of type A1 and a single blow up resolves them; the surface Kum(C) obtained by
blowing up the 16 singular points of JC/〈ι〉 is the Kummer surface of the curve C.

Let C be a curve of genus two and let X be the corresponding Kummer surface;
the Picard group of the surface X contains a sublattice spanned by the classes of the
16 pairwise disjoint exceptional curves lying above the singular points of the quotient
JC/〈ι〉. In fact, it is a classical result that a K3 surface is a Kummer surface if and only
if it contains 16 pairwise disjoint smooth rational curves. Since the 16 classes contacted
in JC/〈ι〉 are independent in the Picard group, the rank of Picard group of X is at
least 16; moreover, these classes are not the support of an ample divisor, since they are
contracted in the morphism X → JC/〈ι〉 and it follows that the rank of Pic(X) must be
at least 17.

Exercise 2. Let C be a smooth projective curve of genus two. Denote by JC the
Jacobian of C and by O the origin of JC. Let σ : C × C → C × C denote the exchange
of the two factors and let Sym2C = C × C/〈σ〉 be the quotient of C × C by the group
generated by σ. Show that there is an isomorphism Sym2C → BlO(JC).

[Hint: Find a divisor of degree 0 associated to a pair of points on C.]

1.2. Picard groups of K3 surfaces and étale cohomology. In this section, we give
a method that was used by Ronald van Luijk in [vL07] to construct explicit examples of
K3 surfaces defined over Q and having Picard number one over an algebraic closure Q
of Q. Whenever we talk about the rank of the Picard group of a variety Y defined over
a field k, we always mean the rank of the Picard group of the base-change of Y to an
algebraic closure of the field k.

The starting point is the observation that in a smooth family of algebraic varieties over
a connected base, the generic Picard group injects in the Picard group of any smooth
element of the family. Let X be a K3 surface defined over the rational numbers Q.
Clearing denominators, we obtain a scheme X over the integers, that we interpret as
a family of K3 surfaces over the one-dimensional base Spec(Z): the generic fiber of the
morphism X → Spec(Z) is the surface X over the rational numbers, and the fibers of
the family over the closed points of Spec(Z) are the reductions of the equations of X
modulo the prime numbers. We now apply the observation about the behaviour of Picard
numbers under specialization to the family X → Spec(Z): the Picard number of the K3
surface X is at most equal to the Picard number of the reductions of X modulo the
primes of good reduction of X . Ideally, we would like to find a prime p such that the
reduction Xp of X modulo p is smooth and the Picard number of Xp is one. In fact, a
consequence of the Tate conjectures (that is known for K3 surfaces) is that the Picard
number of a K3 surface defined over the algebraic closure of a finite field is always even:
the strategy mentioned above cannot work without an extra input.

Suppose that there are two primes p, q of good reduction for X such that the Picard
numbers of the reductions of X modulo p and modulo q are both equal to 2; it follows
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that the Picard number of X is at most 2. If the Picard number of X were 2, then the
Picard group would have finite index in the Picard group of both surfaces Xp and Xq,

and in particular the ratios disc(Pic(X))
disc(Pic(Xp))

and disc(Pic(X))
disc(Pic(Xq))

of the discriminants of the various

Picard groups would all be squares. We deduce that also the ratio disc(Pic(Xp))

disc(Pic(Xq))
is a square.

We can now state the overall strategy. First, find two smooth quartic surfaces X2, X3,
with X2 defined over the field F2 and X3 defined over the field F3, both with Picard
number 2. Show that the discriminants of the Picard groups of the two surfaces X2

and X3 do not differ by a square. Use the Chinese remainder theorem to find a quartic
polynomial with integer coefficients reducing modulo 2 to an equation of X2 and modulo
3 to an equation of X3. By the behaviour of Picard numbers in families, the Picard
number of X is at most equal to 2. Since the discriminants of the Picard groups of X2

and of X3 do not differ by a square, the Picard group of X cannot have finite index in
both Pic(X2) and Pic(X3): the Picard number of X is at most one and we are done.

In order for this strategy to work we need to be able to prove that the Picard number
of the K3 surfaces X2 and X3, defined over the finite fields F2 and F3 respectively, is
equal to 2. It is in general easy to give lower bounds on Picard numbers of surfaces:
the rank of the intersection matrix of any set of curves on a surface Y is a lower bound
for the Picard number of Y . In particular, we may start with surfaces X2 and X3 each
containing two curves whose intersection matrices have rank 2 and discriminants not
differing by a square. But we still need to ensure that the Picard numbers of the surfaces
are at most equal to 2. This is where étale cohomology and the action of the Frobenius
endomorphism come into the argument.

Fix a prime ` different from the characteristic of the ground field k. For any integer
n, the étale cohomology functor Hn

ét

(
−,Q`

)
is a contravariant functor from schemes over

k to vector spaces over Q`, that are entirely analogous to singular cohomology with
coefficients in a field for varieties defined over the complex numbers. In fact, if X is a
smooth projective variety over C, then there are comparison theorems showing that the
dimensions of the vector spaces Hn

ét(X,Q`) and Hn(X(C),C) are equal.
Let X be a scheme defined over a finite field F with q elements. Because of the

functoriality of étale cohomology, for every integer n there is an action of the Frobe-
nius automorphism of F on the Q`-vector spaces Hn

ét(X,Q`); denote by Fr the endomor-
phism of Hn

ét(X,Q`) induced by the Frobenius automorphism. The vector subspace An

of Hn
ét(X,Q`) spanned by the classes of algebraic subvarieties of dimension n

2
is invari-

ant under the endomorphism Fr; even more is true: the eigenvalues of the action of the
Frobenius endomorphism on A all have absolute value q

n
2 and the characteristic polyno-

mial of Fr has integral coefficients. This is the key part of the argument: the dimension
of the subspace A2 is an upper bound for the Picard number of X, and the dimension
of the subspace of the vector space H2

ét(X,Q`) where the Frobenius endomorphism acts
with eigenvalues of absolute value q is in turn an upper bound for the dimension of A2.
Observe that, in concrete cases, by systematically trying divisors on X and checking the
rank of the intersection matrix with curves on X, we can easily obtain lower bounds
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for the Picard number: what is missing is a criterion that allows us to conclude that
the divisors we constructed form indeed a basis. This bound is the one described above
in terms of the subspace A2. In general, the vector space An spanned by the algebraic
classes of codimension n

2
may not coincide with the vector subspace of H2

ét(X,Q`) where

the Frobenius endomorphism acts with eigenvalues of absolute value q
n
2 : this is part of

the Tate conjectures . Nevertheless, if we can compute the dimension of the subspace
where the endomorphism Fr acts with eigenvalues of absolute value q

n
2 , even without

knowing that the Tate bound is achieved, whenever it is true in a concrete case, it can
be verified. Thus to conclude our program, it suffices to give a procedure to compute the
dimension of the eigenspaces of the Frobenius endomorphism: indeed, we will compute
the characteristic polynomial of Fr.

On the one hand, the fixed points of the action of the Frobenius automorphism of the
field on the variety X are precisely the points of X defined over the field F. On the
other hand, the Lefschetz Trace Formula admits an analogue for étale cohomology with
an action of the Frobenius endomorphism and we obtain the identity

#X(F) =
∑

n

(−1)n Tr
(
Fr: Hn

ét (X,Q`)→ Hn
ét (X,Q`)

)
.

It follows easily that by computing the number of points of X over successive extensions
of the ground field F, we obtain more and more relations on the traces of the Frobenius
action on the étale cohomology vector spaces: with an upper bound on the dimension of
the étale cohomology vector spaces, we eventually compute all the traces of the Frobenius
elements. This is clearly enough information to deduce the characteristic polynomial χ
of Fr acting on H2

ét(X,Q`). To conclude, we extract the degree of the largest factor of χ
whose roots all have absolute value equal to q and this number is the required bound: the
surfaces X2 and X3 mentioned above have Picard number equal to 2 and the argument
is complete.

In the paper [ALT12] we use a different method to compute the Picard group of a
specific K3 surface arising from a problem of Büchi. The computation of the Picard
group guides the study that we make of the rational points on the Büchi K3 surface
allowing us to prove Zariski density of the set of rational points. The paper [HT08] of
B. Hassett and Yu. Tschinkel contains an alternative geometric approach in the case of
K3 surfaces over function fields.
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