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Hilbert’s Third Problem:
Scissor congruence

Given two polyhedra in R3, when can they be dissected with
finitely many planar cuts so that the resulting pieces are

congruent?

1 Introduction

This problem is often called Scissor congruence. A first obvious condition that
needs to be satisfied is that the polyhedra must have the same volume.

We begin with the two-dimensional analogue of Hilbert’s question.

Given two planar polygons, when can they be cut along straight
line segments so that the resulting pieces are congruent?

The answer is the Wallace–Bolyai–Gerwien Theorem: two planar polygons
are scissor congruent if and only if they have the same area. We give a proof of
this fact.

After dealing with the case of planar polygons, we turn our attention to
three-dimensional figures and address Hilbert’s Third Problem. Given two poly-
hedra of equal volume, is it always possible to decompose them into congruent
subpolyhedra? For instance, do a cube and a regular tetrahedron of equal vol-
ume admit congruent decompositions? We will see the answer, given by Dehn,
along with the definition and properties of the Dehn invariant .

Recall the definition of congruence.

Definition 1.1. Two subsets A,B ⊂ En of a Euclidean space are congruent if
there is an isometry σ : En → En such that σ(A) coincides with B.

We will use this notion almost exclusively for planar polygons in the Eu-
clidean plane E2 and for polyhedra in the Euclidean space E3.

2 Planar polygons

We begin with the case of the Euclidean plane E2. Recall that if T is a topo-
logical space, then a subset A ⊂ T is a regular closed subset if A is the closure
of its interior: A = intA.

Definition 2.1. A planar polygon is a bounded, regular closed subset in the
Euclidean plane E2 whose boundary is the union of finitely many line segments.

For instance, all triangles, squares, rectangles, parallelograms are planar
polygons. See Figure 1. We do not require planar polygons to be convex,
connected or simply connected. In particular, the bounded polygons in Figure 1
could be viewed as four distinct planar polygons, or they could be a single planar
polygon with four connected components.
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Figure 1: Examples of planar polygons

Let P be a planar polygon. Denote by ∂P the boundary of P , that is,
∂P = P \ intP . By definition, the boundary of P is a finite union of line
segments. Let E ⊂ ∂P be a line segment contained in the boundary of P . If
there is no larger line segment contained in P , then we call E a maximal edge.
An edge of P is a line segment E, contained in ∂P , whose endpoints are points
of intersections of maximal edges of P .

Example 2.2. Let T12 be the planar polygon formed by two adjacent triangles,
shown in Figure 2.

e1

e3 e2

f1

f3 f2

Figure 2: The edges of the planar polygon T12

The maximal edges of T12 are e2, e3, f2, f3 and e1∪f1. Besides the five maximal
edges, the polygon T12 has two more edges:

• e1, whose endpoints are (e1 ∪ f1) ∩ e3 and (e1 ∪ f1) ∩ e2, and

• f1, whose endpoints are (e1 ∪ f1) ∩ f3 and (e1 ∪ f1) ∩ f2.

Definition 2.3. Let P be a planar polygon. A scissor decomposition of P is a
finite sequence (P1, . . . , Pn) of planar polygons, such that

• ∪iPi = P , and

• for all distinct i, j ∈ {1, . . . , n}, the polygons Pi and Pj have disjoint
interior.
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Let P be a planar polygon and let (P1, . . . , Pn) be a scissor decomposition
of P . To connect with the “scissor” intuition, we sometimes call cuts the edges
of the planar polygons P1, . . . , Pn. We now introduce an equivalence relation
among planar polygons.

Definition 2.4. Two planar polygons P,Q are scissor congruent if there are
scissor decompositions (P1, . . . , Pn) of P and (Q1, . . . , Qn) of Q of the same
length n such that for all i ∈ {1, . . . , n}, the planar polygons Pi and Qi are
congruent.

Of course, the area of a planar polygon is invariant under scissor congruence:
if two planar polygons are scissor congruent, then their areas are the same.

Before checking that scissor congruence is an equivalence relation, we give
two examples of scissor congruence.

Example 2.5. We show that

a triangle T with height a with
respect to its longest edge,

a T

and

a rectangle R with the same
area as T and an edge of
length a

2 ,

a
2 R

are scissor congruent. We do this with a sequence of drawings.

The cuts l1, l2 of T yield a scissor decomposi-
tion of T into a yellow, red and green connected
component.

The cuts m1,m2 of R yield a scissor decomposi-
tion of R into a yellow, red and green connected
component.

It is now a matter of elementary Euclidean ge-
ometry to check that the pieces with the cor-
responding colour in the decomposition of the
triangle T and of the rectangle R are congru-
ent.

l1

l2
a

a
2
a
2

A scissor decomposition of the
triangle T

m1 m2
a
2

A scissor decomposition of the
rectangle R

a
a
2
a
2

Example 2.6. We continue by showing that the a× b rectangle is scissor con-
gruent to the

√
ab ×

√
ab square. Again, we do this by a sequence of drawings

in Figure 3. In the specific drawings, we used the 4× 9 rectangle and the 6× 6
square.

Lemma 2.7. Scissor congruence is an equivalence relation.
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√
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a

√
ab
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a√
ab

√
ab

Figure 3: Every rectangle is scissor congruent to a square

Proof. We will check that scissor congruence is reflexive, symmetric and tran-
sitive. Reflexivity and symmetry are completely clear, so that we focus on
transitivity.

Suppose that P,Q,R are planar polygons and that P,Q are scissor congru-
ent and also Q,R are scissor congruent. Thus, there are positive integers m
and n and lists (P1, . . . , Pm), (Q1, . . . , Qm), (Q′1, . . . , Q

′
n), (R1, . . . , Rn) of pla-

nar polygons such that

• no two distinct polygons in the same list share a common interior point;

• ∪iPi = P , ∪iQi = Q = ∪jQ′j , ∪jRj = R;

• for all i ∈ {1, . . . ,m}, the polygons Pi and Qi are congruent via an isom-
etry ϕ1

i : Pi → Qi;

• for all j ∈ {1, . . . , n}, the polygons Q′j and Rj are congruent via an isom-

etry ϕ2
j : Q′j → Rj .

For (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, define planar polygons

Qij = int(Qi ∩Q′j), Pij = (ϕ1
i )
−1(Qij), Rij = ϕ2

j (Qij).

We leave as an exercise to check that the lists (Pij)(i,j) and (Rij)(i,j), each
consisting of mn planar polygons, are scissor decompositions of P and R re-
spectively that satisfy the properties of Definition 2.4. We conclude that P
and R are scissor congruent.

We are now ready to prove the Wallace–Bolyai–Gerwien Theorem.

Theorem 2.8 (Wallace–Bolyai–Gerwien). Two planar polygons are scissor con-
gruent if and only if they have the same area.

4



Proof. It is clear that scissor congruent polygons have the same area. To prove
the converse, we show, by a series of steps, that every planar polygon is scissor
congruent to a rectangle with one edge of unit length. This is sufficient, since
any two planar polygons with the same area are therefore scissor congruent to
the same rectangle and hence are scissor congruent to each other.
Step 1: every planar polygon P is scissor congruent to a union of convex planar
polygons.

Indeed, let ` = l1 ∪ . . . ∪ ln be the union of all the lines containing an edge
of P . Denote by P 0 = (P \ `) ⊂ P the complement in P of `. We leave as
an exercise to show that every connected component of P 0 is also a connected
component of E2 \ `. We deduce that the components of P 0 are convex and
that P is scissor congruent to a disjoint union of convex planar polygons.
Step 2: every convex planar polygon P is scissor congruent to a union of
triangles.

Indeed, if p0, . . . , pn are the vertices of P , numbered consecutively, then

(intP ) \
⋃

i∈{2,...,n−1}

p0pi

is the disjoint union of n− 1 open triangles.
Step 3: every triangle is scissor congruent to a rectangle with one edge of unit
length.

Indeed, by Example 2.5, every triangle is scissor congruent to a rectangle.
Next, by Example 2.6, every rectangle is scissor congruent to a square. In par-
ticular, every square is congruent to a rectangle with an edge of unit length.
Using that scissor congruence is an equivalence relation (Lemma 2.7), we con-
clude that every triangle is scissor congruent to a rectangle with a side of unit
length.
Step 4: every planar polygon P is scissor congruent to a rectangle with one
edge of unit length.

Indeed, by the previous steps, we find the following sequence of scissor con-
gruences

P ∼ (union of convex polygons)

∼ (union of triangles)

∼ (union of rectangles with an edge of unit length).

At this point, we can simply stack together all the rectangles with an edge of
unit length to deduce that P is scissor congruent to a single rectangle with
an edge of unit length. Since the area of P is preserved under these steps, we
deduce that every planar polygon with area A is scissor congruent to a rectangle
with edges of length 1 and A. We conclude that any two planar polygons with
the same area are scissor congruent to one another, as needed.
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3 Aside on tensor products

Before moving on to the three-dimensional case, we introduce tensor products
of abelian groups. We will see that they naturally arise in the definition of the
Dehn invariant that will appear in the next section.

Definition 3.1 (Free abelian group on a set). Let S be a set. The free abelian
group on S is the abelian group 〈S〉 whose elements are formal, finite, integral
linear combinations of the elements of S. That is, the elements of 〈S〉 are
expressions of the form ∑

s∈S
nss,

where the coefficients ns are integers and at most finitely many of them are
non-zero. The identity element is

∑
s 0·s. Sums and inverses are defined by∑

s

mss+
∑
s

nss =
∑
s

(ms + ns)s and −
∑
s

mss =
∑
s

(−ms)s.

Sometimes, the free abelian group on a set S is suggestively denoted by⊕
s∈S Zs. This emphasizes the analogy of 〈S〉 with the vector space with basis S:

instead of allowing the coefficients of the basis vectors to be elements from a
field, we restrict them to be integers. We view each element s of S as an element
of 〈S〉, using the identification

s =
∑
t∈S

δstt, where δst =

{
0, if s 6= t;
1, if s = t.

Example 3.2. Let S = {s1, s2, s3} be a set with three elements. Each element
of 〈S〉 is of the form

a1s1 + a2s2 + a3s3, where a1, a2, a3 ∈ Z.

For instance, the three expressions

3∑
i=1

(i2 − 4)si, −3s1 + 0s2 + 5s3, −3(s1 − s3) + 2s3,

represent the same element of 〈S〉.

We will use the free abelian group on S construction in the case in which the
set S is infinite. To clarify potential doubts, we emphasize that the elements
of 〈S〉 are finite linear combinations of the elements of S. In particular, if an
identity or an argument only involves finitely many elements of 〈S〉, then the
same identity or argument essentially takes place in a free abelian group on a
finite subset of S. Nevertheless, it is convenient for us to use an infinite set of
generators, since it would be quite involved to explicitly describe which finite
set would be enough.
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In the definition of the free abelian group on a set S, whether or not the
set S had a further structure (e.g. S itself is an abelian group, a vector space,
a ring,. . . ) plays no role. Indeed, if S and T are sets with the same cardinality,
then the groups 〈S〉 and 〈T 〉 are isomorphic. In the following definition, we mix
the construction of 〈S〉 with extra structure coming from the underlying set S.

Definition 3.3 (Tensor product of abelian groups). Let A,B be abelian groups.
The tensor product A⊗B of A and B is the quotient of the free abelian group
〈A × B〉 on the cartesian product A × B by the subgroup generated by the
elements

(a+ a′, b)− (a, b)− (a′, b) and (a, b+ b′)− (a, b)− (a, b′),

for all a, a′ ∈ A and all b, b′ ∈ B. We denote the coset of (a, b) in A ⊗ B by
a⊗ b, so that the identities

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b, a⊗ (b+ b′) = a⊗ b+ a⊗ b′

hold in A⊗B.

We will see that the Dehn invariant associates to a polyhedron an element
of the tensor product of two abelian groups.

The first group is the additive group of real numbers R.
The second group is also familiar: it is the group of rotations in the plane

with the origin as centre. We denote this group by S1. We identify a rotation
with the measure in radians θ ∈ [0, 2π) of the angle by which we rotate. The
sum of two rotations is then addition of real numbers modulo 2π. Thus, two
real numbers define the same rotation if and only if they differ by an integer
multiple of 2π. Hence, we identify the two groups

S1 and R/(2πZ).

We will see that the group D = R⊗S1 ' R⊗
(
R/(2πZ)

)
plays a fundamental

role in the Scissor congruence problem.
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Aside. We can view the identification S1 ' R/(2πZ) also using linear algebra.
The rotation with angle θ ∈ R is the linear map

R(θ) : R2 −→ R2

(a, b) 7−→ (a cos θ − b sin θ, a cos θ + b sin θ).

The matrix of the linear transformation R(θ) with respect to the standard basis
of R2 is

R(θ) ! ρθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The function R is actually a group homomorphism

R : R −→ S1

θ 7−→ ρθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The homomorphism R is surjective. The kernel of R is the subgroup 2πZ of R
consisting of all the integer multiples of 2π. Thus, we identify the group of rota-
tions S1 with the quotient group R/(2πZ):

S1 ' R/(2πZ).

As stated above, we are essentially interested in the finitely generated sub-
groups of S1. For this reason, we concentrate on them now.

We will need to decide if elements of the group D are equal to 0 or not, and
for this, we use the following proposition.

Proposition 3.4. Let L ⊂ S1 be a finitely generated abelian subgroup and
let d ∈ L be an element. If d is not a torsion element, then 1⊗ d ∈ R⊗ L is a
non-zero element.

Proof. Let (n, F, σ) be a triple consisting of a non-negative integer n, a finite
abelian group F and an isomorphism

σ : L
'−→ Zn ⊕ F,

whose existence is guaranteed by the Structure Theorem of finitely generated
abelian groups. Write σ(d) =

(
(a1, . . . , an), f

)
, with a1, . . . , an ∈ Z and f ∈ F .

Since d is non-torsion, not all integers a1, . . . , an vanish.
Forming the tensor product of R with L and with Zn ⊕ F , we find the

isomorphisms

R⊗ L ' R⊗ (Zn ⊕ F )

' (R⊗ Zn)⊕ (R⊗ F )

' R⊗ Zn

' Rn.

Under these isomorphisms, the element d maps to (a1, . . . , an) ∈ Rn. As we
saw, this is not the zero element and we are done.

While we will not require the explicit structure of finitely generated sub-
groups of S1, we state it here as a fact.
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Fact 3.5. Let L ⊂ S1 be a finitely generated subgroup. There are non-negative
integers n, a and an isomorphism

σ : L
'−→ Zn ⊕ Z/aZ.

4 Polyhedra

We now turn our attention to Scissor congruence in E3.

Definition 4.1. A polyhedron is a closed, bounded region in the Euclidean
space E3 whose boundary is the union of finitely many planar polygons.

Often, the definition of polyhedron includes the property of being convex .
We do not impose this condition, since we are again interested in decomposing
polyhedra and we can always refine a decomposition to contain only convex
pieces.

As before, we define scissor decompositions and scissor congruence also for
polyhedra.

Definition 4.2. A scissor decomposition of a polyhedron P is finite sequence
(P1, . . . , Pn) of polyhedra such that

• ∪iPi = P ;

• for all distinct i, j ∈ {1, . . . , n}, the polyhedra Pi and Pj have no common
interior point.

Definition 4.3. Two polyhedra P,Q are scissor congruent if there are scissor
decompositions (P1, . . . , Pn) of P and (Q1, . . . , Qn) of Q of the same length n,
such that, for all i ∈ {1, . . . , n}, the polyhedra Pi and Qi are congruent.

Just as in the case of scissor congruence for planar polygons, there is a clear
invariant that is preserved by scissor congruence for polyhedra: the volume.

In contrast with the case of planar polygons, there is one further quantity
that is preserved under scissor congruence for polyhedra: the Dehn invariant .

4.1 The Dehn invariant

Max Dehn was a student of David Hilbert. Dehn solved Hilbert’s Third problem
within a year of Hilbert’s 1900 address to the International Congress of Mathe-
maticians. It was later discovered that the problem had already been asked and
solved before Hilbert stated it, but we will go over Dehn’s proof.

The Dehn invariant D is a function

D : {polyhedra in E3} −→ D = R⊗ S1

with two fundamental properties.

9

https://en.wikipedia.org/wiki/Max_Dehn


(1) Congruent polyhedra have equal Dehn invariant:

if P is a polyhedron and σ is an isometry of E3, then

D(σ(P )) = D(P ).

(2) The Dehn invariant is additive for polyhedra with disjoint interiors:

if P,Q are polyhedra and (intP ) ∩ (intQ) = ∅, then

D(P ∪Q) = D(P ) +D(Q).

An easy induction shows that the additivity property actually holds more gen-
erally for unions of finitely many polyhedra no two of which share a common
interior point.

The volume function, with values in R, has the same properties as the Dehn
invariant. Thus, we can view the Dehn invariant as a variation on the notion of
volume.

Aside. The volume function can be extended to much more varied sets of

shapes than just polyhedra. This forms the foundation of measure theory. In this

setting, there are subtle relations between finite additivity and measurability: see

the Banach-Tarski paradox. Since we are only concerned with polyhedra, these

possible extensions will not be relevant for our purposes.

The fundamental idea behind the definition of the Dehn invariant is to mix
lengths of edges with the corresponding angles. Let us make this precise.

Definition 4.4. A dihedral angle α is a closed region in E3 whose boundary
consists of two distinct half-planes H1, H2 ⊂ E3 originating from the same line `.
We call ` the edge of α and H1, H2 the faces of α.

`

H1

H2

α

The dihedral angle α

` e

H1

H2

α

A dihedral angle with a line segment in red

Let α be a dihedral angle with edge ` ⊂ E3 and let e ⊂ ` be an open segment.
For us, pairs (e, α) arise in connection with dihedral angles of polyhedra along
their edges. We assign to the pair (e, α) an element δ(e, α) ∈ D as follows.
Denote by |e| ∈ R>0 the length of the segment e and denote by α̂ ∈ (0, 2π) the
measure in radians of the dihedral angle α. We set

δ(e, α) = |e| ⊗ α̂ ∈ D . (1)

For the next construction, a good example of a polyhedron to keep in mind
is the union of two cubes meeting along part of an edge. An example C of such
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The polyhedron C The sets e(C) and v(C) The segments in ess(C)

Figure 4: A polyhedron and its essential segments

a polyhedron is drawn in Figure 4, along with the subsets e(C), v(C) and ess(C)
that we now define.

Let P be a polyhedron. We denote by e(P ) ⊂ P the union of all the edges
of P , that is, e(P ) is the union of all the points of P where at least two faces
of P meet: the set e(P ) is the union of finitely many closed line segments. We
also denote by v(P ) ⊂ P the union of all the vertices of all the faces of P :
the set e(P ) consists of finitely many points. Finally, we observe that the
complement e(P ) \ v(P ) of the set v(P ) inside e(P ) is the union of finitely
many, disjoint, open line segments. We denote by ess(P ) the set of connected
components of e(P ) \ v(P ).

Definition 4.5. Let P be a polyhedron. An essential segment of P is an
element of ess(P ).

Thus, essential segments of a polyhedron P are open line segments contained
in edges of P and ess(P ) is the set of all finitely many essential segments of P .

We come to the definition of the fundamental building block for the Dehn
invariant.

Definition 4.6. Let P be a polyhedron. An essential pair for P is a pair (e, α)
consisting of an essential segment e ∈ ess(P ) and a dihedral angle α ⊂ E3 with
edge containing e and faces H1, H2 such that there are two distinct faces f1, f2
of P satisfying

• H1 contains f1;

• H2 contains f2;

• the essential segment e is contained in the boundary of both f1 and f2;

• a neighbourhood of e in α is contained in the polyhedron P .

We denote by E (P ) the set of all essential pairs of P .

We are ready to define the Dehn invariant of a polyhedron.
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Definition 4.7 (Dehn invariant). Let P be a polyhedron. The Dehn invariant
D(P ) of P is the expression∑

(e,α)∈E (P )

δ(e, α) =
∑

(e,α)∈E (P )

|e| ⊗ α̂ ∈ D .

Now that we have a definition of the Dehn invariant, we proceed to check
that it really is invariant under Scissor congruence. By construction, if P and Q
are congruent polyhedra, then D(P ) and D(Q) coincide. Thus, to conclude it
suffices to show that if we cut a polyhedron P using a plane into polyhedra P+

and P−, then the Dehn invariant of P is the sum of the Dehn invariants of P+

and of P−.
Let P be a polyhedron in E3 and let L ⊂ E3 be a plane. Denote by L+

and L− the two closed half-spaces into which L decomposes the vector space E3.
Let P+ = int(P ∩ L+) and P− = int(P ∩ L−) be the two polyhedra obtained
by splitting P with the plane L. We want to show that the identity

D(P ) = D(P+) +D(P−) (2)

holds. Observe that the edges of P+ and P− are contained either in edges of P
or in the intersection of a face of P with the plane L. We begin by analyzing
how essential pairs change under the scissor decomposition (P+, P−) of P .

Let (e, α) ∈ E (P ) be an essential pair of P . We consider three cases sepa-
rately:

(1) a neighbourhood of e in α is entirely contained either in L+ or in L−;

(2) the plane L contains exactly one (interior) point of the essential segment e;

(3) the plane L contains the essential segment e and the angle α is not con-
tained in either one of the half-spaces L+ or L−.

Note that there are no further possibilities, since if the plane L is not disjoint
from e, then it either meets e at exactly one point or it contains e.

Case (1). The plane L misses a neighbourhood of the essential segment e in α.

L
H1

H2

e `

α

Case (1): the plane L, in red, misses the orange neighbourood of e

Thus, the essential pair (e, α) is an essential pair of exactly one among P+

and P−.

The contribution of (e, α) is

{
δ(e, α) = |e| ⊗ α, to D(P ); and

δ(e, α) + 0 = |e| ⊗ α, to D(P+) +D(P−).

Case (2). The plane L slices the essential segment e at a unique interior point.
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L
H1

H2

e2e1 `

α
|e| = |e1|+ |e2|

Case (2): the plane L, in red, slices the essential segment e, in orange

The measure α̂ of the dihedral angle α in radians is unaffected by L, but the
edge e is split into two separate essential edges e1, e2, one in each polyhedron
P+ and P−.

The contribution of (e, α) is



δ(e, α) = |e| ⊗ α, to D(P );

and
δ(e1, α) + δ(e2, α)

= |e1| ⊗ α+ |e2| ⊗ α to D(P+) +D(P−).

= (|e1|+ |e2|)⊗ α,

Case (3). The plane L splits the dihedral angle into two dihedral angles α1

and α2, each with the same edge e.

L

H1

H2 e`

α−α+

α̂ = α̂+ + α̂−

Case (3): the plane L, in red, slices the diehdral angle α

The essential pair (e, α) of P gives rise to the essential pairs (e, α1) and (e, α2)
of P+ and P− and the relation α̂ = α̂1 + α̂2 holds.

The contribution of (e, α) is



δ(e, α) = |e| ⊗ α, to D(P );

and
δ(e, α+) + δ(e, α−)

= |e| ⊗ α+ + |e| ⊗ α− to D(P+) +D(P−).

= |e| ⊗ (α+ + α−),

So far, we have seen how slicing with a plane affects the essential pairs of
the polyhedron P . There is one more computation that we need.

(4) The essential pairs of P+ and P− that are created by the slice. These
“new” pairs arise when the plane L cuts through faces of P , creating new
edges.

Case (4). The plane L intersects the interior of a face f , determining an edge e
in both P+ and P−.

13



L

f

e
α−α+ π = α̂+ + α̂−

Case (4): the flat dihedral angle above f is split into two dihedral angles α+ and α−

In this situation, the length of the edge e is unknown, as are the two angles α+

and α−, but the relation α̂+ + α̂− = π holds.

The contribution of (e, α) is


0, to D(P ); and

δ(e, α+) + δ(e, α−)

= |e| ⊗ (α+ + α−) to D(P+) +D(P−).

= |e| ⊗ π,
In one of the exercises, there is a proof that |e| ⊗ π is the zero element of D .

Summarizing, let P be a polyhedron, let L be a plane and let P+ and P−
be the polyhedra “sliced up” by the plane L. Our previous computations show
that the identity

D(P ) = D(P+) +D(P−)

holds in D . Since any scissor decomposition of a polyhedron can be refined to
a scissor decomposition obtained as a succession of slices by planes, we deduce
the following theorem.

Theorem 4.8. If P and Q are scissor congruent polyhedra, then the identity

D(P ) = D(Q)

holds.

Example 4.9 (Dehn invariant of a triangular prism). Let T be the prism of
height h over the equilateral triangle with edge length l. We denote by

• a, b, c the edges on the bottom face of T , each of
length l;

• a′, b′, c′ the edges on the top face of T , each of
length l;

• d, e, f the edges joining vertices on opposite faces
of T , each of length h;

a
bc

a′

b′c′

d e

f

The prism T

The essential segments of T are the 9 (open) line segments a, b, c, a′, b′, c′, d, e, f .
The dihedral angles on the edges a, b, c and a′, b′, c′ are right angles, measuring
π
2 radians. The dihedral angles on the edges d, e, f correspond to the internal
angles of an equilateral triangle, measuring π

3 radians. We find

D(T ) = 6
(
l ⊗ π

2

)
+ 3

(
h⊗ π

3

)
= 0.

14



We can now answer Hilbert’s Third Problem.

Theorem 4.10. The regular tetrahedron and the cube with the same volume
are not scissor congruent.

Proof. We compute the Dehn invariant of a cube C with edge length c. Let
(e, α) ∈ E (C) be an essential segment of the cube C. The dihedral angle α is a
right angle, measuring π

2 radians. Thus, we compute

D(C) =
∑

(e,α)∈E (C)

δ(e, α) = 12c⊗ π

2
= 3c⊗ (2π) = 0.

Similarly, let T be a tetrahedron with edge length t and let (e, α) ∈ E (T ) be an
essential segment of T . The dihedral angle α measures arccos 1

3 radians. Thus,
the Dehn invariant of the tetrahedron T is

D(T ) =
∑

(e,α)∈E (T )

δ(e, α) = 4t⊗ arccos
1

3
.

To conclude that C and T are not scissor congruent, it is enough to check, by
Proposition 3.4, that π is not a rational multiple of arccos 1

3 . Equivalently, we
want to show that, for no rational number r, the real number cos(rπ) equals 1

3 .
We therefore conclude using Lemma 4.11.

Lemma 4.11. Let r ∈ Q be a rational number. The real number 2 cos(rπ) is
an algebraic integer. In particular, if cos(rπ) is rational, then its denominator
divides 2.

Proof. Let α ∈ C be the complex number

α = cos(rπ) + i sin(rπ) = eiπr.

Write r = p
q , with p, q ∈ Z, q 6= 0, so that α2q = (−1)2p = 1. Thus, the

numbers α and its complex conjugate α are roots of the polynomial x2q−1. We
deduce that α and α are algebraic integers and hence, so is 2 cos(rπ) = α+α.
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