These lecture notes cover Hilbert’s Tenth Problem. They are intended for
the students taking the module MAS3J9-Historical Challenges in Mathematics
at the University of Warwick. We follow very closely the notes of a talk given
by Yuri Matiyasevich that can be found here.

If you have any comments or find any mistakes, please let me know, either
in person or by email (d.testa at warwick.ac.uk).

Damiano Testa
January 2020

https://logic.pdmi.ras.ru/~yumat/personaljournal/H10history/H10histe.pdf

Hilbert’s Tenth Problem:
Solvability of Diophantine equations

Find an algorithm that, given a polynomial D(x1, ..., x,) with
integer coefficients and any number of unknowns decides whether or
not there are integers ay, ..., a, € Z such that D(ay,...,a,) = 0.

1 Introduction

At the time when Hilbert posed the question, computers and algorithms did
not exist. Thus, the statement above is a more recent reformulation of the
actual question. Already in Hilbert’s times, though, there was an extensive
list of results proving that special polynomial equations with integer coefficients
admit or do not admit integer solutions.

22— 2% = -1, xz® 4+ y° = 2°, Pyt +22 =114 (1)
Pell’s equation Fermat’s equation sum of three cubes

Examples of Diophantine equations

The pair (x,y) = (1,1) is an integer solution to the first equation in (1). All
integer solutions of the second equation in (1) must have zyz = 0. As of
January 2020, it is unknown whether the third equation in (1) admits an integer
solution or not.

Definition 1.1. A Diophantine equation is an equation of the form
D(xq,...,z,) =0,
where D is a polynomial in some number n of variables and integer coefficients.

The approaches to finding solutions to Diophantine equations usually rely
on widely different methods, each adapted to the particular shape of the equa-
tion being solved. Hilbert thought of specializing the question to the following
decision problem: Given a Diophantine equation, decide if it is soluble or not
in integers. He was interested in finding an algorithm that would answer the
decision problem uniformly for all Diophantine equations.

Through the efforts of several mathematicians (Davis, Putnam, Robinson,
Matiyasevich, among others) over the years, it was discovered that the algorithm
sought by Hilbert cannot exist.

Theorem 1.2 (Undecidability of Hilbert’s Tenth Problem). There is no algo-
rithm which, for a given arbitrary Diophantine equation, would tell whether the
equation has a solution or not.

Before giving some steps in the proof of this result, we give some context.
There are several variants of this question. We may want the set of coordinates
of the required solutions to be

https://en.wikipedia.org/wiki/Pell
https://en.wikipedia.org/wiki/Fermat
https://en.wikipedia.org/wiki/Sums_of_three_cubes#Computational_results

the integers Z (Hilbert’s original question);

the natural numbers N = {0,1,2,...};

the rational numbers Q;

the real numbers R;

the complex numbers C;

and so on. Similarly, we may be interested in polynomial equations with a fixed
number of variables, of a fixed degree, with coefficients in a number field, in a
finite field, in the field of real numbers, Of course, the answers to these
questions are not entirely unrelated. Some of these decision questions are easy
to answer, others are notorious open problems.

2 From the integers to the natural numbers

We emphasize that, for this module, the set of natural numbers N consists of
the non-negative integers and includes 0.

In what follows, we talk about a computer, when we really mean a Turing
machine. A Turing machine is a device that, given a finite list of instructions
and arbitrary access to time and memory, performs calculations and outputs
values. A universal Turing machine is a Turing machine that can reproduce the
output of any finite list of rules read by any other Turing machine. Essentially
all real-world computers (or even phones or watches!) are universal Turing
machines, provided we imagine that they have access to an arbitrarily large
supply of memory and time.

We use the expression computer program or procedure for a finite sequence
of instructions that a computer uses to run, possibly forever, while computing
values. The set, possibly empty, of computed values, may involve repetitions.
We reserve the term algorithm for a procedure that terminates on all possible
inputs.

We introduce a little bit of notation, to simplify our treatment. Let R C C
be a subset. Typically, we choose R € {Z,N}. We denote by 3D(R) (standing
for “there exists a decision algorithm for Diophantine equations and solutions
in R”) the statement

There is an algorithm with

input a polynomial D(z1,...,z,) with integer coefficients
in any number of variables.
AD(R):
true, if there are aq,...,a, € R such that
output D(ay,...,an) = 0;

false, otherwise.

To uniformise with the standard notation used in the resolution of Hilbert’s
question, we restrict our attention to non-negative integers solving Diophantine
equations. This is not a serious restriction, and covers Hilbert’s question, as we
will see shortly. First, recall Lagrange’s Four-Square Theorem.

Theorem 2.1 (Lagrange’s Four-Square Theorem). FEvery non-negative integer
18 the sum of four squares of integers.

We can now prove our first reduction.
Lemma 2.2. The two statements 3D(Z) and ID(N) are equivalent.

This means that the decision problem with integer solutions is equivalent to
the decision problem with non-negative integer solutions.

Proof. Suppose that 3D(Z) holds and let Az be the implied decision algorithm
for integer solutions. Thus, for a polynomial D(z1,...,z,) with integer coeffi-
cients, Az(D) returns true, if the equation D = 0 has a solution with integer
coordinates, and false, otherwise.

We want to show that there is an algorithm Ay such that for every polyno-
mial D(z1,...,2,) with integer coefficients, Ay(D) returns true, if the equation
D = 0 has a solution with non-negative integer coordinates, and false, other-
wise. For this, we use Lagrange’s Four-Square Theorem. For each i € {1,...,n},
we introduce the 4 new variables y; 0, yi,1,¥i,2, ¥i,3 and we replace the ith vari-
able x; by the substitution

T v Yot Uit Uia+Uis

In this way, the polynomial D(z1,...,z,) with integer coefficients in n variables
becomes the polynomial

Dy =D o+ yi1+Uio+Uis - Uro+t Va1 +Yns+Yns)

still with integer coordinates, but in 4n variables. We now run the algorithm Ay,
on D,. As the y-variables range among the integers, the corresponding sums of
four squares range over exactly the set of non-negative integers, by Lagrange’s
Four-Square Theorem. It follows that Az(D,) returns true if and only if the
polynomial D has a non-negative integer solution, as required.

To prove the converse, assume that 3D(N) holds and let By be the implied
decision algorithm for non-negative integer solutions. Thus, for a polynomial
D(xy,...,x,) with integer coefficients, By(D) returns true, if the equation D =
0 has a solution with non-negative integer coordinates, and false, otherwise.

Let D(z1,...,x,) be a polynomial with integer coefficients. Run the algo-
rithm By on the product

Dy = H D(e1x1,. .., €ny).
€1,...,en€{E1}

We obtain that By(D+) returns true if and only if there are signs o1,...,0, €
{#£1} and natural numbers a4, . .., a, € Nsuch that D(o14a4,...,0,a,) vanishes.

https://en.wikipedia.org/wiki/Lagrange%27s_four-square_theorem

This precisely means that By(D.) returns true if and only if there are integers
b1,...,b, € Z such that D(by,...,by,) vanishes, as required. O

From now on, unless otherwise stated, we focus on the decision problem
ID(N) for non-negative integer solutions to Diophantine equations. As we saw,
the statements 3D(Z) (Hilbert’s Tenth Problem) and 3D(N) are equivalent, yet
our treatment is going to be slightly simplified talking about 3D(N).

Aside. While the statements 3D(N) and 3D(Z) are equivalent (and algorithmi-
cally undecidable), it is unknown whether the statement 3D(Q) is algorithmically

decidable or not.

As an initial approach to trying to find a decision algorithm for Diophantine
equations, one could try the following. Let D(z1,...,z,) be a polynomial with
integer coefficients in n variables.

e Enumerate all n-tuples (a1, ...,a,) € N* in any way.

For instance, for each natural number ¢, we could take the finitely many
n-tuples (aq,...,a,) with sum a; + --- + a, = t, and order them lexico-
graphically.

e For each n-tuple a in the list, successively compute the evaluation D(a).

e If the evaluation D(a) equals 0, then return true: we have proved that
there is a solution in natural numbers to the Diophantine equation D = 0.

o If the evaluation D(a) does not equal 0, then move on to the next n-tuple
and back to the evaluation step.

The procedure just described has the following properties. If, on the one
hand, the input Diophantine equation D = 0 admits a solution with non-
negative integer coordinates, then our procedure will eventually stumble upon
such a solution. Once that happens, the procedure terminates, giving true
as output: we know that the input D is soluble. If, on the other hand, the
input equation D = 0 does not admit a solution with non-negative integer co-
ordinates, then our procedure will never terminate: it will eventually try each
n-tuple and will check that the value of D is never 0, but it will not terminate
in a finite time. For an easy example, if the input were the constant polynomial
D(xq,...,x,) = 1, then the procedure will never terminate, as the evaluations
are always equal to 1.

This very elementary procedure almost resolves Hilbert’s Tenth Problem.
All that is missing, is, in the case of a Diophantine equation with no solution, a
criterion for deciding when we have tried enough n-tuples. While it may feel like
we have almost solved our problem, it turns out that filling in this apparently
tiny, gap is precisely where all the difficulty is hiding.

3 Diophantine and listable sets: definition

Let us take a small digression to see a strategy to resolve Hilbert’s Tenth Prob-
lem and show that it is undecidable. For any individual Diophantine equation
D = 0, the existence of an algorithm deciding if it is soluble or not is com-
pletely clear: among the two algorithms, one that always returns true and the
other that always returns false, one (and only one) decides correctly the sol-
ubility of D = 0. Of course, we would not know which of the two algorithms
to choose. Nevertheless, the ezistence of an algorithm correctly deciding any
given Diophantine equation, or any finite number of them, is clear! It is also
clear that this kind of “solution” is unsatisfactory and we would like a better
answer. To avoid these issues, we are going to look for an infinite number of
Diophantine equations D; = 0, one for each natural number ¢ € N, for which
there is no decision algorithm. So far, this is not really a strengthening of our
initial problem: the set of all Diophantine equations (in a fixed, countable set
of variables) is countable and the parameter ¢ introduced above could simply
be an enumeration of all Diophantine equations. Thus, we view a Diophantine
equation D(t,x1,...,x,) = 0in n+1 variables as a family of Diophantine equa-
tions, one for each value of t. We limit our choice of families to families of this
form: it will turn out that this is enough for our purposes. Such families allow
us to define special subsets of N, obtained as the values a € N for which the cor-
responding Diophantine equation D(a,x1,...,z,) = 0 admits a solution. For
added flexibility, we allow families depending on more than just one parameter.

Definition 3.1. A subset S C N" is Diophantine if there is a non-negative

integer n and a polynomial D(t1,...,t., x1,...,x,) with integer coefficients such
that ()
A(xq,...,2,) € N?
— T I)y n bl
S{(tlaytr)EN D(t1’7tr,$1,7{1}n):0 }

In words, a Diophantine set is the set of values of the parameters of some
Diophantine equation for which the corresponding Diophantine equation admits
solutions. As always, we require all coordinates to be non-negative integers.

We now introduce a closely related (indeed, equivalent) concept that will
guide us in our approach to understanding Hilbert’s Tenth Problem and unde-
cidability.

Definition 3.2. A subset L C N" is listable if there is a computer program
that, when left to run indefinitely,

e only outputs r-tuples in L;
e eventually outputs all the elements of L, possibly with repetitions.

Most of the explicit examples of listable sets that we will see are in fact
subsets of N. Nevertheless, having the freedom of allowing r-tuples, will simplify
our treatment. It is easy to come up with examples of listable sets in N.

Example 3.3. The following subsets of N are all listable:

the set of all natural numbers N,

132007 315
2 17315,

the set of odd integers greater than or equal to

the set of squares {n*: n € N},

o the set of prime numbers different from 282:589:933 _ 1,

We point out that in the examples just given, not only each set is listable,
but also its complement in N is listable. This is simply a consequence of the
fact that we did not try too hard to write a complicated example! Indeed, the
existence of listable subsets of N with non-listable complement is one of the two
main ingredients in the proof of undecidability of Hilbert’s Tenth Problem.

From our point of view, we can therefore isolate three kinds of subsets of N:

(LL) listable sets S C N with listable complement N \ S
(LN) listable sets S C N with non-listable complement N\ S

(NN) non-listable sets S C N with non-listable complement N \ S.

Aside. We have seen examples of sets of type (LL), listable with listable comple-
ment. We will see later an example of a set of type (LN), listable with non-listable
complement. For completeness, we show that sets of type (NN), non-listable with
non-listable complement, do exist. This is a straightforward cardinality argument.
A computer program is a finite list of finitely many symbols (satisfying certain
grammatical and syntactical rules). Let A be the set of symbols that we are al-
lowed to use. For example, A could consist of the 256 characters of the extended
ASCII table, or the 137,929 Unicode characters. A computer program is therefore
a finite list of symbols extracted from the set A. Thus, the set of all computer
programs is contained in the union U,enA™. As this is a countable union of fi-
nite sets, we deduce that there exist at most countably many computer programs.
Since a computer program produces at most one listable set, we deduce that there
are countably many listable sets. Thus, there are also countably many sets whose
complement is listable. Overall, we deduce that there are countably many sets
S C N with the property that at least one among S and N \ S is listable. Since
there are uncountably many subsets of N, we deduce that there exist (plenty of)
sets that are neither listable, nor their complement is listable. An imprecise, but
possibly intuitive, definition of a non-listable set with non-listable complement is
as follows. Start with an empty set S. For each natural number n, flip a coin: if
heads comes out, add n to the set S; if tails comes out, do not add it. The set
obtained as an outcome of this infinite procedure is, almost surely, a non-listable

set with non-listable complement.

Let us go back to our discussion. To approach Hilbert’s Tenth Problem
e we show that there are listable sets with non-listable complement;

e we argue that Diophantine sets and listable sets coincide.

Assuming these two facts, the undecidability of Hilbert’s Tenth Problem follows.
Indeed, let U C N" be a listable set with non-listable complement. Choose any
Diophantine equation Dy = 0, depending on r parameters (and of course some
number of variables), for which the set of values of the parameters giving rise
to a soluble Diophantine equation is precisely U. The existence of Dy is a
consequence of the fact that Diophantine and listable sets coincide. If there
were an algorithm deciding, for each value of the parameters in N”, whether
or not the Diophantine equation Dy = 0 were soluble, then there would be a
computer program listing all the non-soluble values of Dy = 0. This means
that N” \. U would be listable, contrary to the assumption on U.

Aside. To argue undecidability, it would be enough to show that there exists
a Diophantine set whose complement is not listable. In principle, showing the
equality of Diophantine and listable sets is therefore not necessary. Nevertheless,

we will outline a proof of the equality of Diophantine and listable sets.

4 Listable sets with non-listable complement

We present here a construction of a listable subset T" C N with the property
that its complement N \ 7" is not listable.

Let us take a computer and let us create a list of programs that can run on the
computer. We are interested in listing all programs that take natural numbers
as input. This can be achieved in multiple ways. For instance, a computer
program is, at its core, a (possibly very long) string of binary digits and we may
associate to each computer program the corresponding binary number. Thus,
we can take our computer, feed it successively each binary number ¢ and see if
the result is a computer program with N as an input set. (Usually, we would
use a compiler to convert the binary number into machine-readable code.) If
the resulting program has input set N, then we add the binary number 7 to
our list of programs, otherwise, we do not. The specifics of how we choose to
produce such a list is irrelevant for our discussion: the only important property
is that such lists exist and we can compute one. Thus, the set of binary numbers
encoding computer programs is listable. Notice that most computer programs
in our list will be very boring: some will immediately terminate, regardless of
the input, others will waste longer and longer time and memory computing
irrelevant values to eventually print a fixed number, such as 10, others still will
enter into a loop and never output anything. Nevertheless, for each natural
number ¢ > 0, we can talk about the ¢th program in our list.

We now sort all of our programs in two disjoint sets 7" and O: define

T = {z ith program terminates on input z} CN;
O = {z ith program does not terminate on input Z} CN.

Notice the self-referential nature of this definition: we ask whether the computer
program with index 7 terminates on input its own index 1.

Clearly, the sets T and O partition the natural numbers: we have TUO = N
and TNO = 0.

Lemma 4.1. The set T is listable and its complement O is not listable.

Proof. Step 1: the set T is listable. To see this, we define a procedure,
whose eventual outputs are precisely the indices 7 of computer programs in our
list that terminate on input 7.

(1) Start by defining a set V, initially empty, and a counter j, initially set to
equal 0.

(2) Loop through all the computer programs with indices i < j, allowing the
ith program to run with input its own index i for up to j steps. If one of
these programs terminates, add the corresponding index to the set V.

(3) Once the loop terminates, increase the counter j by 1 and return to the
loop in (2), with the higher value of j.

Provided we wait long enough, every computer program in our list will have
a chance to run for an arbitrary amount of time on the relevant input. If the ith
computer program ever terminates with input 4, it will do so in finitely many
steps, say in s steps. Therefore, the procedure described above adds the index 4
to the set V' before the counter j exceeds max{i,s}. Conversely, if the ith
computer program does not terminate on input 4, then the procedure described
above will never output i. We deduce that the partial sets V produced by the
program are always contained in T and eventually exhaust 7. We obtain that T’
is listable: we even outlined a computer program listing 7.

Step 2: the set O = N\ T is not listable. Proceed by contradiction and
suppose that the set O is listable. Thus, we have two listing procedures:

e one, following from Step 1, with output the indices ¢ € T', i.e. the indices
for which the corresponding computer program terminates with input 1,

and

e the other with output the indices i € O = N\ T, i.e. the indices for which
the corresponding computer program does not terminate with input 4.

Define a program c as follows: on input ¢ € N, alternatively use the listing
programs for the set T and the set O, until one of the two outputs . If we
find that ¢ belongs to 7', then ¢ enters into an infinite loop, never terminating.
If we find that i belongs to O, then ¢ terminates returning 0. Informally, the
program c¢ terminates on input 4 if the ith program does not terminate with
input 4, and, viceversa, it does not terminate on input ¢ if the ith program
terminates with input 7. As ¢ is a computer program taking a natural number
as input, it appears in our list of computer programs and hence has an index i..

We now ask ourselves whether the index 7. of the program c belongs to T’
or O. If it belonged to T, then, by definition of T, the i.th program, namely ¢
itself, terminates on input i.. By definition of the program c, this means that
the program c¢ does not terminate on input i., and we reach a contradiction.
The remaining possibility is that i, belongs to O, so that the i.th program,

again ¢, does not terminate on input i.. Yet, the definition of ¢ then forces ¢ to
terminate on input i, and we reach again a contradiction. It follows that the
computer program c cannot exist and, hence, that there cannot exist a listing
procedure for the elements of O. O

5 Diophantine and listable sets: equivalence

So far, we showed that listable sets need not have listable complement. In
order to prove undecidability of Hilbert’s Tenth Problem, it suffices to find a
Diophantine set whose complement is not listable. After the combined efforts of
many mathematicians, over many years, Davis conjectured that the asymmetry
between Diophantine and listable sets is only apparent.

Conjecture 5.1 (Davis). Every listable set is Diophantine.

Informally, we can interpret this conjecture as saying that every computer
program that can ever be written, whose output are r-tuples of natural numbers
can be “mimicked” by a Diophantine equation. The mimicking is of course in
the sense that, for each computer program which outputs r-tuples of natural
numbers, there is a polynomial D in r parameters, plus an auxiliary number n
of variables, such that the set of values computed by the program is precisely
the set of values of the parameters for which the Diophantine equation D = 0
admits a solution.

One of the two implication is straightforward (see Lemma 5.2). For the
converse, we will go a little bit into the details of how Diophantine sets can be
interpreted as computer programs.

Lemma 5.2. FEvery Diophantine set is listable.

Proof. The argument is a simple modification of our initial (failed) approach at
deciding Diophantine equations. Let S C N” be a Diophantine set. Suppose
that D(t1,...,t,21,...,2y) is a polynomial with integer coefficients such that
the identity

Az, ..., z,) € N*, with
S=<(t1,...,t.) e N"

D(tl,...,tr,xl,...,mn) =0

holds.

Enumerate all (r+n)-tuples of natural numbers and evaluate D in succession
on each one of them. If ever we run into an (r 4+ n)-tuple (¢1,...,t, 21,...,Zy)
in N™*" solving the equation D(t1,...,t., z1,...,2,) = 0, then we output the
r-tuple (t1,...,%-). In either case, we continue.

Clearly, we only output elements in S during our procedure (possibly mul-
tiple times). Moreover, every r-tuple in S will eventually appear as an out-
put, since the witness solution (¢1,...,t.,z1,...,2,) of D = 0 showing that
(t1,...,tr) is an element of S, appears at some point of our enumeration of all
(r + n)-tuples of natural numbers. This concludes the proof that every Dio-
phantine set is listable. U

We now turn to the converse, namely showing that every listable set is Dio-
phantine. We only partially show this implication. The strategy is to establish
a connection between Diophantine sets and computer programs and to argue
that all computer programs arise via this connection.

Indeed, we view a Diophantine equation D(t1,...,t.,z1,...,2,) = 0 in r
variables and n unknowns as a “coding” of a computer program outputting r-
tuples of natural numbers. The program coded by D is the program described
in the proof of Lemma 5.2. We enumerate all (r 4+ n)-tuples of natural numbers,
successively evaluating D at each (r 4+ n)-tuple and, when D evaluates to 0
on the (r + n)-tuple (ai,...,ar,y1,-..,yn), the program outputs the r-tuple
(a1y...,a.).

The way to reduce a computer operation to a Diophantine set, proceeds
via the “graph” of the corresponding operation. For instance, suppose that we
want to find a Diophantine set encoding the statement that the natural numbers
a, b satisfy the inequality a < b. Thus, we try to prove that the set M C N?
consisting of all pairs (a,b) € N? satisfying a < b is Diophantine. We achieve
this using the equivalence

a<b <= (FreN):b=a+zx.

Hence, the relation < on natural numbers is encoded by the Diophantine equa-
tion b — a — x = 0, with two parameters (a,b) and one variable = (recall that
a, b, z are non-negative!). Similarly, for divisibility, the equivalence

alb <= (@BzxeN):b=ax

shows that the divisibility relation on natural numbers is encoded by the Dio-
phantine equation b—ax = 0, with two parameters (a, b) and one variable x. To
see an example involving more parameters, we analyse the congruence relation
a =b (mod c). In this case, a possible equivalence is

a=b (modc) <= (JzeN): ((a=b+cz)or(a=0b—cx)).

In this case, besides having one more parameter ¢, we also have to come up with
a way of encoding the logical operator or. To deal with this, we use that the
product of two natural numbers vanishes if and only if at least one of the factors
vanishes: this clearly has the same logical value as the operator or. Therefore,
the set of triples (a, b, ¢) such that the relation ¢ = b (mod ¢) holds is the same
as the Diophantine set defined by the equation

(a—b—cx)(a—b+cx) =0,

in the three parameters a, b, c and the variable x. Let us see an example with
the and operator. Suppose that we want to encode as a Diophantine set, the
relation on triples (a, b, ¢) satisfying a < min{b, c}, that is the conjunction of
the two relations a < b and a < ¢. As before, we have the equivalence

a < min{b,c} <= (((HIGN): b=a+z) and ((3z € N): c:a+x)>.

10

Now, we exploit that two natural (or even real) numbers are both zero if and
only if the sum of their squares vanishes. This allows us to encode the relation
a < min{b, ¢} as the Diophantine equation

b—a—z)+(c—a—y)?*=0

in three parameters a, b, c and two variables z,y. We used two variables, since,
if we used only one variable x and wrote the Diophantine equation

(b—a—z)+(c—a—x)>=0,

the triples (a,b,c) for which there is a solution are precisely the triples with
a<bandb=c.

The equivalence between Diophantine and listable sets can be obtained by
giving an explicitly “dictionary” allowing us to convert every computer pro-
gram P having r-tuples of natural numbers as outputs into a Diophantine
equation Dp(ty,...,tr,&1,...,2,) = 0 in r-parameters and some additional
number n of variables, such that the equality

parameters (ai,...,a,) € N" for which
outputs of the | _ the Diophantine equation
program P Dp(ai,...,ar,%1,...,2,) =0 admits a

solution in natural numbers.

holds.
We already saw a few examples of Diophantine (and hence listable) sets. To
get a better feeling for what kind of issues arise, let us see two further examples.

Example 5.3 (Composite numbers). Let C' = {4,6,8,9,10,...} C N be the
set of composite natural numbers, that is, the numbers that are a product of
two (not necessarily distinct) natural numbers, each at least equal to 2. This
suggests the following equality

C= {t eEN: (3z,yeN), t= (x+2)(y+2)}.
Thus, the set C is Diophantine, and a possible Diophantine equation describ-
ing C' is
t—(z+2)(y+2)=0.
Example 5.4 (The non-powers of 2). Let S = {0,3,5,6,7,9,...} C N denote
the set of natural numbers that are not powers of 2. We find a Diophantine
equation Dg(t, z,y) = 0 in one parameter ¢ and two variables x, y such that the
identity
5= {t eN: (3z,y €N), Ds(t,,y) = o}

holds. A natural number is not a power of 2 if and only if it has an odd divisor
greater than or equal to 3. This means that we can write

S = {tEN: (3z,y € N), t:(29:+3)y},

11

since (2z + 3) ranges among all odd natural numbers that are at least equal
to 3. Thus, a Diophantine equation describing the set S of non-powers of 2 is

t—(2z+3)y=0.

In the two examples just presented (composite numbers and non-powers
of 2), we found two simple Diophantine equations, each depending on one pa-
rameter and only two variables, describing them. In either case, the complement
of each one of the sets is clearly listable. The set of powers of 2 can be listed
by a program that starts by setting a parameter j to 1 and then loops through
the following steps: print j, replace j by 2j. Similarly, the set of primes is
the set of natural numbers n that are not divisible by any natural number
d e {2, 3,...,n — 1}: this condition can be easily converted into a computer
program to list the set of prime numbers.

As a consequence of the equivalence between listable and Diophantine sets,
we obtain that the set of powers of 2 and the set of prime numbers are both
Diophantine sets. In these two cases, finding a Diophantine equation describing
the corresponding set is much more challenging than what we have seen so far.

An observation of Putnam makes the existence of such Diophantine equa-
tions even more striking. Let D(¢,z1,...,2,) = 0 be a Diophantine equation
in one parameter ¢t and any number n of variables. The Diophantine set Sp
of values of t € N for which the corresponding Diophantine equation admits a
solution is also equal to the set of non-negative values of a polynomial. Indeed,
let Pp denote the polynomial

Pp=(t+1)(1 - D(t,z1,...,2,)%) — L.

The only chance for the polynomial Pp to obtain a non-negative value is to
evaluate it at a (1 + n)-tuple which is a root of D (recall that we are only
allowed non-negative inputs). By definition, this means that ¢ is in the set Sp
and that the value of Pp is

Pp=@t+1)(1-D(t,z1,...,2,)°) —1=(t+1)- (1-0*) - 1=t

This simple “trick” allows us to interchange freely between Diophantine subsets
of N and non-negative values of polynomials with integer coefficients.

Before the equivalence of listable and Diophantine sets was proved, this
observation was one of the main sources of disbelief at the proposed equivalence.
For instance, we already stated that the set of prime numbers is listable. It
follows that there is a polynomial with integer coefficients in several variables
whose non-negative values are precisely the prime numbers. Nowadays, there
are many explicit examples of such polynomials, but at the time, this was seen as
very unlikely to be true. For instance, the formula available here is a polynomial
with integer coefficients in 26 variables whose non-negative values are exactly
the prime numbers. Without going into the details of how to construct such a
polynomials, you can see that it is of the form (k + 2) - (1 — (sum of squares)),
in line with Putnam’s observation discussed above.

12

https://en.wikipedia.org/wiki/Formula_for_primes#Formula_based_on_a_system_of_Diophantine_equations

The work of many mathematicians culminated in a result of Davis, Putnam
and Robinson about the structure of listable sets. Assuming that the set of
triples {(a,b,a’): a,b € N} is Diophantine, then every listable set is Diophan-
tine. Even more, further work of Robinson showed that to prove the equivalenece
of listable and Diophantine sets, it suffices to show that the set of powers of 2
is Diophantine. This last step was finally achieved by Matiyasevich.

6 Possible further topics

Existence of a “universal Diophantine equation”

The set of all Diophantine subsets of N is listable. This is simply because the
set of Diophantine equations in a finite (but not fixed) number of variables is
listable. Hence, we can fix an enumeration Dy, D1, ..., D,,... of all Diophantine
subsets of N. The “universal Diophantine set” is the subset

U={(nt): neN, teD,}

of N2. The set U is Diophantine. As a consequence, there is a natural number m
and a polynomial P(t, 21, ...,T,) in m+1 variables with the following property.
For every Diophantine set D contained in N, there exists a natural number ¢p,
such that the set D is the set of non-negative values of P(tp,x1,...,%m), as
Z1,...,Zm range in N. In this sense, the polynomial P “describes all Diophan-
tine subsets of N”.

Godel incompleteness theorem

Given a language, a listable set of axioms in this language and a listable set
of logical deductions among statements in this language, we can program a
computer to list all provable statements. This is similar to what we already
saw. We form all possible deductions using an increasing number of axioms
and an increasing number of deduction steps. The result, is that we can list all
theorems. If the language is sufficiently complex so as to encode the standard
arithmetic (e.g. the axioms are the axioms of ZFC), then the existence of unde-
cidable Diophantine equations implies that there are true statements about the
natural numbers that are not provable from the given list of axioms.

Universal Turing machines, cellular automata and Rule 110

Once the equivalence of Diophantine and listable sets is established, it is natural
to wonder how simple can a computer be to still be able to generate all listable
sets: what are the simplest universal Turing machines?

One of the simplest examples is called Rule 110. This “computer” reads 3
consecutive binary digits and returns a binary digit. The rules that it follows
are given in Table 1.

13

’ Input ‘ Output H Input ‘ Output ‘

111 0 011 1
110 1 010 1
101 1 001 1
100 0 000 0

Table 1: Instructions for Rule 110

The “program” is a string of Os and 1s that the machine scans from left to
right. The output is another string of 0s and 1s, constructed following the rules
above.

Example 6.1. Suppose that we feed the string 00010111 to Rule 110. The
machine starts reading the leftmost triple of digits 000 and writes 0, according
to Table 1. Next, it reads the digits 001 in positions 2,3,4 and appends 1 to
the output. It continues by reading 010 and appending 1. Continuing in this
manner, the output of Rule 110 on input 00010111 is

011110.
Sample problems whose resolution is equivalent to the solubility of a
Diophantine equation

Besides many problems in number theory that are directly asking for solubility
of a Diophantine equation, there are problems that can be reduced to such a
form. Examples are

e the existence of a non-trivial zero of the Riemann (-function with real part
different from % (cf. Riemann Hypothesis);

e the existence of an even number greater than or equal to 4 that is not a
sum of two primes (cf. Goldbach’s conjecture).

14

	Introduction
	From the integers to the natural numbers
	Diophantine and listable sets: definition
	Listable sets with non-listable complement
	Diophantine and listable sets: equivalence
	Possible further topics

