MA3D9: Geometry of curves and surfaces

Exercises 5.

(1) Suppose that A is a 2×2 positive semidefinite symmetric matrix (i.e. $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbf{R}^{2}$). Show that $\operatorname{det} A \geq 0$.
Suppose that B is another symmetric matrix with $B-A$ positive semidefinite. Show that B is positive semidefinite, and that $\operatorname{det} B \geq \operatorname{det} A$. (For example, diagonalise B.)
Suppose that $f, g: \mathbf{R}^{2} \longrightarrow \mathbf{R}$ are smooth functions, with $g(u, v) \geq f(u, v) \geq 0$ for all $u, v \in \mathbf{R}$ and with $f(0,0)=g(0,0)=0$. Let κ_{f}, κ_{g} be respectively the Gauss curvatures of the graphs of f and g at the origin. Show that $\kappa_{g} \geq \kappa_{f} \geq 0$.
(2) Let S be a regular surface, and $p \in S$. Suppose that the normal at p has non-zero component in the z-direction. Show that there is a chart $\mathbf{r}: U \longrightarrow S$ with $p \in \mathbf{r}(U)$ and with $\mathbf{r}(u, v)=(u, v, f(u, v))$ for all $(u, v) \in U$, where $f: U \longrightarrow \mathbf{R}$ is a smooth function.
Suppose that S lies on one side of its the tangent plane at p. Show that the Gauss curvature of S at p is non-negative.
Suppose that there is some $a \in \mathbf{R}^{3}$ such that p is a furthest point of S from a. That is, $\|a-q\| \leq\|a-p\|$ for all $q \in S$. Show that the Gauss curvature of S at p is at least $1 /\|a-p\|^{2}$.
(3) Consider the quadratic form $\mathbf{x} \mapsto \mathbf{x}^{T} P \mathbf{x}$ on \mathbf{R}^{2} given by the matrix

$$
P=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)
$$

Show that that maximal absolute value attained by the form for $\|\mathbf{x}\|=1$ is equal to $\max \{|\lambda|,|\mu|\}$.
Let S be a surface, and $p \in S$. Deduce that the maximal value of $\left|\mathbf{e} . \nabla_{\mathbf{e}} \mathbf{n}\right|$ for $\mathbf{e} \in T_{p}(S)$ with $\|\mathbf{e}\|=1$ is equal to $\max \left\{\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right\}$, where κ_{1} and κ_{2} are the principal curvatures. If $\kappa_{1}, \kappa_{2} \geq 0$, show that the minimal value is $\min \left\{\kappa_{1}, \kappa_{2}\right\}$.
Suppose that γ is a unit speed curve in S with $\gamma(t)=p$, and that the Gauss curvature of S at p is positive. Show that $\left|\gamma^{\prime \prime}(t) \cdot \mathbf{n}\right| \geq \min \left\{\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right\}$. Deduce that the curvature of γ at p is at least $\min \left\{\left|\kappa_{1}\right|,\left|\kappa_{2}\right|\right\}$.
(How does this relate to the case of the sphere in Ex. Sheet 2?)
(4) Let γ be a smooth unit-speed curve in a regular surface S. Write $\mathbf{T}, \mathbf{N}_{S}$ and \mathbf{n} respectively for the tangent to γ, the normal to γ in S and the normal to S in \mathbf{R}^{3} (so that $\left\{\mathbf{T}, \mathbf{N}_{S}, \mathbf{n}\right\}$ is an orthonormal basis). Let Π denote the second fundamental form on $T_{\gamma(t)}(S)$, and let γ_{S} be the geodesic curvature of γ in S. Show that:

$$
\begin{aligned}
\mathbf{T}^{\prime} & =\kappa_{S} \mathbf{N}_{S}+\Pi(\mathbf{T}, \mathbf{T}) \mathbf{n} \\
\mathbf{N}_{S}^{\prime} & =-\kappa_{S} \mathbf{T}+\Pi\left(\mathbf{T}, \mathbf{N}_{S}\right) \mathbf{n} \\
\mathbf{n}^{\prime} & =-\Pi(\mathbf{T}, \mathbf{T}) \mathbf{T}-\Pi\left(\mathbf{T}, \mathbf{N}_{S}\right) \mathbf{N}_{S}
\end{aligned}
$$

