MA3D9. Curves and surfaces.

Exercises 2.

(1) Calculate the Frenet frame, curvature and torsion of the curve $\left[t \mapsto\left(t, a t^{2}, b t^{3}\right)\right]$ at the origin. Verify the Frenet-Serret formula in this case.
(2) (The helix). Consider the curve $\gamma: \mathbf{R} \longrightarrow \mathbf{R}^{3}$ given by

$$
\gamma(s)=(a \cos (\omega s), a \sin (\omega s), b \omega s)
$$

where $a>0, b$ and ω are constant.
Calculate ω, if s is an arc length parameter. Calculate the Frenet frame, curvature and torsion of γ at an arbitrary point. Show that the curvature and torsion are constant. Verify the Frenet-Serret formula in this case.
Show that, for suitable a, b we can find such a curve with any given constant torsion and constant positive curvature.
(3) Suppose that $\gamma: I \longrightarrow \mathbf{R}^{3}$ is a regular curve (not necessarily parameterised by arc length). Show that the curvature and torsion are given respectively by

$$
\kappa=\frac{\left|\gamma^{\prime} \wedge \gamma^{\prime \prime}\right|}{\left|\gamma^{\prime}\right|^{3}}
$$

and

$$
\tau=\frac{\left(\gamma^{\prime} \wedge \gamma^{\prime \prime}\right) \cdot \gamma^{\prime \prime \prime}}{\left|\gamma^{\prime} \wedge \gamma^{\prime \prime}\right|^{2}}
$$

(4) Suppose that $\beta, \gamma: I \longrightarrow \mathbf{R}^{3}$ are two unit speed smooth curves. Suppose that the curvatures and torions are everywhere positive, and that $\mathbf{B}_{\beta}(s)=\mathbf{B}_{\gamma}(s)$ for all s. Show that there is a fixed $\mathbf{p} \in \mathbf{R}^{n}$ such that for all $s \in I, \gamma(s)=\beta(s)+\mathbf{p}$.
(5) Let γ is a unit-speed curve with non-zero curvature and torsion. Let $r=1 / \kappa$ and $t=1 / \tau$.
(a) If the image of γ lies in the unit sphere, show that $r^{2}+\left(r^{\prime} t\right)^{2} \equiv 1$.
[Differentiate $\|\gamma(s)\|^{2}=1$ three times to show that $\gamma=-r \mathbf{N}-r^{\prime} t \mathbf{B}$.]
(b) If $r^{2}+\left(r^{\prime} t\right)^{2} \equiv 1$, show that γ lies in a unit sphere (about some fixed point).
[Let $\beta=\gamma+r \mathbf{N}+r^{\prime} t \mathbf{B}$. Show that $\beta^{\prime}=0$, so that β is constant.]

