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Abstract. Tabulating elliptic curves has been carried out since the ear-
liest days of machine computation in number theory. After some histor-
ical remarks, we report on significant recent progress in enlarging the
database of elliptic curves defined over QQ to include all those of conduc-
tor N < 130000. We also give various statistics, summarize the data,
describe how it may be obtained and used, and mention some recent
work regarding the verification of Manin’s “c = 1” conjecture.

1 Background and history

Tabulating elliptic curves has been carried out since the earliest days of ma-
chine computation in number theory. In this article we concentrate on tables
which claim to contain complete lists of elliptic curves with conductors in cer-
tain ranges. Other tables exist, notably tables of curves with prime conductor
by Brumer and McGuinness [4] and, more recently, by Stein and Watkins [21].
We first review the tables existing before 1990, and then describe the tables
we have compiled since then, concentrating on the large increase in the data
available since mid-2005. We will describe the origins of the tables and give
some information on the methods used to compile them. We give a summary of
the data obtained to date, describe how to obtain and use the data, and mention
some recent work regarding the verification of Manin’s “c = 1”7 conjecture.

1.1 The Antwerp Tables

For many years the only published tables giving data on elliptic curves of small
conductors were those in the volume [2], popularly known as “Antwerp IV”,
which forms part of the Proceedings of an International Summer School in Ant-
werp, July/August 1972, with the title Modular Functions of One Variable IV
(edited by Birch and Kuyk).

The Antwerp tables consist of the following:

Table 1: All elliptic curves of conductor N < 200, arranged into isogeny classes, with
the structure of the Mordell-Weil group (in most cases) and local data for
primes of bad reduction. The origin of this table is discussed below.



Table 2: Generators for the curves of positive rank (one in each isogeny class) in Table
1, which all have rank 1. These were determined independently by Nelson
Stephens and James Davenport; there are two omissions (143A and 154C)
and two errors (155D and 170A).

Table 3: Hecke eigenvalues for primes p < 100 for the newforms associated to the
elliptic curves in Table 1; due to Vélu, Stephens and Tingley.

Table 4: All elliptic curves whose conductor has the form N = 2%3°, arranged in
isogeny classes (with no information on the Mordell-Weil groups); due to
Coghlan.

Table 5: Dimensions of the space of newforms for I'H(N) for N < 300, including
the dimensions of eigenspaces for the Atkin-Lehner involutions W, and the
splitting of the space of newforms over Q; due to Atkin and Tingley.

Table 6: Factorized polynomials in F,[j], for primes p < 307, whose roots are the
supersingular values of j in characteristic p; due to Atkin.

To quote [2], “The origins of Table 1 are more complicated”; two pages of [2]
are devoted to explaining this further. Briefly, the list 749 curves in this table
evolved as follows.

— Swinnerton-Dyer searched for curves with small coefficients and kept those
with conductor N < 200; he added curves obtained via a succession of 2- and
3-isogenies. Only the coefficients, discriminant and conductor were tabulated
at first.

— Higher degree isogenies were checked using Vélu’s method [24], adding some
curves.

— Tingley used modular symbols to compute the space of newforms for N <
300, together with the action of the Hecke algebra and hence its splitting
into eigenspaces. This revealed 30 “gaps”, isogeny classes which had previ-
ously been missed. These were then filled, either by twisting known curves
or by extending the original search region. For example, in isogeny class 78 A
the curve with smallest coefficients is' 78a1 = [1, 1,0, —19, 685] which is un-
likely to have been found by a search. Subsequently, Tingley went on to find
equations of the associated elliptic curves directly from the newforms, using
a method very similar to the one which we later developed, as described in
[7]. Much of Tingley’s work was never published except in the contribution
to the Antwerp tables, and can only be found in one of three existing type-
script copies of his thesis [23] (Oxford 1975). For the higher levels in the
range N < 300, Tingley’s 1975 program was slow and he only computed
the elliptic curves for newforms where there was no corresponding curve yet
known. By contrast (and to show how both the algorithms and hardware
have improved in 30 years), in 2006 our program can find these curves (for
N < 300) in around 20 seconds.

— The Mordell-Weil ranks were computed by James Davenport, using the
method of 2-descent as described in [3]. In eight cases these were not certain;

1 'We always specify curves by giving the coefficients [a1,a2,a3,a4,as] of a minimal
Weierstrass model. See section 3.2 below for more on labelling conventions.



in seven cases the rank is given as “07” and is in fact 0; in one case it is
given as “17” but is 0.

— The list was known to be complete for certain conductors IV, such as N =
2¢3% and several prime N.

— Tingley’s 1975 thesis [23] contains further curves with 200 < N < 320 found
via modular symbols, newforms and periods.

In the review by Vélu for Mathematical Reviews (MR0389726 (52 #10557))
a number of other minor errors in these tables are corrected.

No more systematic enumeration of elliptic curves by conductor occurred (as
far as we are aware) between 1972 and the mid 1980s.

1.2 The 1992 tables

During the 1980s my research and computations mainly concerned modular sym-
bols and elliptic curves over imaginary quadratic fields. For this, methods were
developed and implemented for handling modular symbols over such fields (ini-
tially, only those of class number one), including the computation of Hecke eigen-
values and periods, and also for dealing with the easier aspects of the arithmetic
of elliptic curves (conductors and point searching, but not ranks). This work
included a need to have information concerning elliptic curves defined over Q
whose conductor lay beyond the range of the Antwerp tables, which led to the
development of a new implementation of the modular symbol method over Q.
At around this time, conversations with Richard Pinch led me to implement
modular symbols over Q with quadratic character (as described in [5]).

One obstacle to the writing up of much of this work was the lack of any
suitable reference in the literature to the modular symbol method over Q for
I'H(N). The new implementation was now not only recomputing from scratch all
the curves listed in Antwerp IV, but also extending the list to larger conductors.
Although these tables did not at this point include isogenous curves or ranks
or generators, they did contain some data not in the Antwerp tables pertaining
to the Birch—-Swinnerton-Dyer conjectures: specifically, they contained for each
curve E the rational number L(E,1)/2g (where 2g is the least real period
of E), whose value is conjectured to be 0 if and only if F(Q) has positive rank,
and is given by a conjectural formula involving the order of the Tate-Shafarevich
group when E(Q) has rank 0.

As a result, although the use of modular symbols to compute elliptic curves
over Q was not in itself original, I decided that there was enough new material
here to be worthy of publication, and in 1988 submitted a paper to Mathematics
of Computation containing a table of elliptic curves of conductor up to 600.
At this point only one curve was listed for each newform: no isogenies, ranks or
generators. This paper was rejected in 1989, on two grounds: there were too many
implementation details, and the referee wanted fuller information to be given for
each curve — including the isogenous curves, and their ranks and generators.
I was invited to resubmit the paper with this extra data included. Carrying
this out required considerable effort, most significantly in re-implementing the



2-descent method of Birch and Swinnerton-Dyer to compute the ranks. James
Davenport had been asked if his program for this still existed, but had replied
that the only copy in existence was on a magnetic tape containing machine code
for a computer which no longer existed; so this had to be done from scratch.
Programs to compute isogenies and find Mordell-Weil group generators also had
to be developed and written.

In 1990 I resubmitted the paper to Mathematics of Computation. The tables
now covered all conductors to 1000, as well as containing all the requested infor-
mation on ranks and generators. The text of the paper was still only 27 pages
long, but it was accompanied by more than 200 pages of tables. The journal
did offer to publish the paper, but with the tables as a microfiche supplement.
However, while the refereeing was taking place, I was approached by several pub-
lishers who had seen the spiral-bound preprint and were interested in publishing
it as a book. As nobody wanted the tables to be available only in microfiche for-
mat (which was rather old-fashioned even in 1990) I therefore withdrew it from
Mathematics of Computation and signed up with Cambridge University Press.

Now, of course, 27 pages of text were insufficient for a book. In the first
edition [6] of “Algorithms for Modular Elliptic Curves” the text was expanded
to around 90 pages, with tables for curves to conductor 1000. It was published
on 8 October 1992 and contained 5089 curves (those for N = 702 were missing
through a stupid error: the number should have been 5113).

1.3 The 1997 tables

By around 1995 the book [6] was out of print and CUP asked me to prepare
a revised version. This duly appeared as [7] in 1997. As well as containing cor-
rections and the missing curves of conductor 702, some sections were rewritten
and a new section and table on the degree of the modular parametrization were
added. However, the range of the printed tables was not extended, though links
were given to online data which extended the range to N < 5077. In addition,
the period between 1992 and 1997 also saw the proof of the Shimura-Taniyama-
WEeil conjecture, which changed the status of some of the statements in the text
as well (obviously) as the status of the tables themselves, which could now be
described as listing all elliptic curves of conductor N < 1000 rather than just
those which were modular.
The full text of [7] has been available online since around 2002.

2 Algorithms and implementation

The method we use to find all (modular) elliptic curves of a given conductor N
uses modular symbols for IH(N), as is explained in detail in [7]. The original
method was similar to that used by Tingley, though with certain improvements.
Moreover, there have been many improvements in the details of the algorithm
since the publication of [7], some of which have been developed in collaboration
with William Stein. As these are rather technical we do not go into details, but



give a brief summary. For some more details (but not the more technical and
recent improvements), see Chapter 2 of [7].

2.1 Finding the newforms

For each level N, one first computes the space of I'h(IV)-modular symbols, and
the action of the Hecke algebra on this space, to find one-dimensional eigenspaces
with rational integer eigenvalues. Each of these corresponds to a rational new-
form f, where “rational” means that the Hecke eigenvalues, and hence the
Fourier coefficients, are rational integers. Actually constructing the space of mod-
ular symbols is fast, though (for large levels) requires sparse matrix methods in
order to fit in available machine memory. Sparse methods are also crucial when
finding Hecke eigenspaces; this step is the most expensive in terms of memory
requirements, and is also time-consuming, when the dimension of the space of
modular symbols is large.

2.2 Finding the curves

Given the newform f, we then integrate 2mif(z)dz along certain paths in the
upper half-plane, which are also given in terms of modular symbols, to obtain first
the periods and then the equation of the associated elliptic curve of conductor N
and L-series L(FE,s) = L(f,s). Finding F in practice involves computing the
period lattice of f to sufficiently high precision; which in turn requires knowing
many terms of the Fourier expansion of f, i.e. many Hecke eigenvalues. From
the (approximate) period lattice of E, we obtain the invariants c4, ¢ of E, at
least approximately; but they are known to be integers. [This was first made
explicit by Edixhoven in [13], following Katz-Mazur; (see also [1]).] Hence ¢4
and cg can be determined exactly if we have sufficient precision. The precision
requirement means that many Hecke eigenvalues are needed (up to 3500 for levels
around 130000), so for this step it is also important for the implementation to be
very efficient. The memory requirements for this step, and the time to compute
the periods themselves, are negligible.

2.3 Reliability of the data

Clearly no large-scale computation such as this can every guarantee 100% accu-
racy, and the software undoubtedly will always have bugs. Most errors to date
have arisen through data processing mistakes: much of the handling of the large
data files produced by our programs was done manually. More recently we have
automated most of this and incorporated checks into our scripts wherever possi-
ble. Occasionally, at certain levels we missed newforms and hence elliptic curves;
this has happened most often just after major rewriting of the code. When curves
are missed at level N, we usually discover the fact when processing level 2N,
since then certain oldforms are not recognised as such. The online data is up-
dated regularly and such corrections are logged; the data imported into packages
(see below) may not be quite so up-to-date.



2.4 Obtaining information about the curves

For each elliptic curve found, we determine the analytic rank from the newform;
when this is greater than 1 we check that it equals the Mordell-Weil rank using
2-descent.

Generators are found using a combination of the traditional methods: (1)
search; (2) 2-descent, using our program mwrank [10]; (3) Heegner points (we
now use MAGMA [16] for these, as the current implementation by Watkins, based
on earlier versions by Cremona, Womack, Watkins and Delaunay, is extremely
efficient); plus saturation methods.

We also compute isogenies, and all data on the isogenous curves. Since the
computation of isogenies is rather delicate (it is easy to miss some if the precision
is insufficient) this is done independently, as a check, using a program of Mark
Watkins; as a benefit, Watkins’s program also computes the degree of the mod-
ular parametrization and determines the curve in each isogeny class of minimal
Faltings height. This method of computing the modular degree (described in
[25]) is very much more efficient than the original one described in [8], which we
stopped using at around N = 14000. The Faltings height information also allows
verification of Stevens’s Conjecture [22], that the curve with minimal Faltings
height in each isogeny class is the one associated with I'1(N) (which is usually,
though not always (especially for smaller N), the same as the curve associated
with IH(N)).

2.5 Software

The original program was written in the 1980s in Al1gol68, and converted to
C++ in the early 1990s. We use either Victor Shoup’s NTL library (see [15]) or
the LiDIA library (see [14]) for high-precision arithmetic, as well as STL (the
Standard Template Library for C++). The sparse matrix code has been completely
redeveloped, based on an earlier version by Luiz Figueiredo. This is probably
the most important single programming improvement, and is essential both to
physically allow levels as high as 100000 to be run on a machine with 2GB of
RAM, and also for greatly increased speed of execution. Even so, some levels
around 130000 require more than 2GB of RAM in which to run.

Without many low-level efficiency and algorithmic improvements it would not
have been possible to have progressed so far. Some of these have been developed
in collaboration with William Stein, who has written more general programs for
computing with higher weights and characters: implemented originally in C++,
then in MAGMA, and most recently in his package SAGE (see [18] and [19]).

One example: in [21] an example is given of a curve of rank 2 and ratio-
nal 5-torsion of conductor 13881, which was then (2002) “beyond the range of
Cremona’s tables”; computing the four curves (up to isogeny) of this conductor
now takes less than 2 minutes to run, requiring about 60MB of RAM. Most
of the computation time is taken up finding the eigenspaces for the first Hecke
operator T, on the modular symbol space of dimension 1768.



2.6 Hardware

The other factor which has had an enormous impact on the expansion of the
tables since spring 2005 is the availability at the University in Nottingham of
a 1024-processor High Performance Computing “GRID” cluster, on which each
user may (normally) use up to 256 processors simultaneously. This has enabled
the processing of a hundred or more levels at a time. The GRID processors are
arranged in pairs in 512 nodes, with each node (a “V20z dual Opteron”) having
access to its own 2GB of RAM. No parallel code is used (yet), so the advantage
of the cluster is simply that of having a large number of machines controlled via
a scheduling system to keep them all busy with the minimum amount of human
intervention.

The nodes in the cluster have “only” 2GB of RAM each; hence for some larger
levels it is necessary to perform separate runs on a different machine, with more
RAM (8GB). So far this has sufficed, but further developments in the code are
under way to enable the current upper bound of 130000 to be passed.

2.7 Milestones

Before using the HPC GRID we used between 0 and 3 machines, all shared with
other users and jobs.

Date Conductor reached
Mar 2001 10000
Nov 2001 12000
Aug 2002 13000
Oct 2002 15000
Jan 2003 16000
Feb 2003 18000
Mar 2003 19000
Apr 2003 20000
Mar 2004 21000
Apr 2004 23000
May 2004 24000
Jun 2004 25000
Oct 2004 26000
Nov 2004 27000
Jan 2005 29000
Feb 2005 30000

After starting to use the HPC GRID, the pace increased considerably:



Date Conductor reached

22 Apr 2005 40000
27 May 2005 50000
9 Jun 2005 60000
20 Jun 2005 70000
14 Jul 2005 80000
26 Aug 2005 90000
31 Aug 2005 100000
18 Sep 2005 120000
3 Nov 2005 130000

Currently the program is undergoing further refinements in the expectation that
it will be able to make further progress without moving wholesale to machines
with more RAM. It would be interesting to cover all levels to N = 234446, which
is the smallest known conductor of a curve with rank 4, namely 234446b1 =
[1,-1,0,-79,289]. Level N = 234446 itself has been run successfully; as well as
the rank 4 curve there are two others with this conductor, both of which have
rank 3: 23444641 = [1, 1,0, —696, 6784] and 234446¢1 = [1,1,1,—949, —7845].

2.8 Using the GRID

To use the HPC GRID we use a fairly simple shell script, which loops over a
range of values of N. This script runs simultaneously on however many nodes
are available. At each pass through the loop, shell commands are used to de-
tect the existence of a log file associated with the value of N in question, which
would indicate that another node was already working on this level. If so, NV is
incremented; otherwise a series of C++ programs is run with N (and other pa-
rameters) as input, which result in all the necessary computations being carried
out for that level with the output suitably recorded. One minor technical issue
here is that the system has to be able to handle several hundreds of thousands of
data files, something of which system administrators may disapprove. [We keep
the data for each level accessible for later runs, since our method of eliminating
oldforms currently involves accessing the data at levels M dividing N, rather
than using degeneracy maps.|
A typical extract from the log file of one node follows:

running nfhpcurve on level 120026 at Fri Sep 23 18:26:48 BST 2005
running nfhpcurve on level 120197 at Fri Sep 23 20:12:31 BST 2005
running nfhpcurve on level 120224 at Fri Sep 23 20:58:18 BST 2005
running nfhpcurve on level 120312 at Fri Sep 23 23:35:19 BST 2005
running nfhpcurve on level 120431 at Sat Sep 24 04:19:54 BST 2005
running nfhpcurve on level 120568 at Sat Sep 24 10:42:18 BST 2005
running nfhpcurve on level 120631 at Sat Sep 24 13:56:49 BST 2005
running nfhpcurve on level 120646 at Sat Sep 24 14:48:21 BST 2005
running nfhpcurve on level 120679 at Sat Sep 24 15:59:54 BST 2005
running nfhpcurve on level 120717 at Sat Sep 24 18:11:20 BST 2005



running nfhpcurve on level 120738 at Sat Sep 24 19:13:11 BST 2005
running nfhpcurve on level 120875 at Sun Sep 25 02:20:27 BST 2005
running nfhpcurve on level 120876 at Sun Sep 25 02:20:28 BST 2005
running nfhpcurve on level 120918 at Sun Sep 25 04:58:32 BST 2005
running nfhpcurve on level 120978 at Sun Sep 25 08:08:00 BST 2005

The program being run here is called “nfhpcurve”, where “nf” stands for
newform, “hp” for “H;” indicates that we use the plus part of the modular
symbol space, and “curve” that we compute the equations for the curve from
each newform. Separate programs are run to find isogenous curves and Mordell-
WEeil generators and other data.

The levels here are in the range 120000-121000; those not listed are being run
on other nodes. Approximately 10 levels per processor per day are completed,
though the time for each individual level varies greatly, depending on several
factors: highly composite N have modular symbol spaces of higher dimension,
which has a major effect on the time required for linear algebra; levels with no
newforms obviously save on the time required to compute many Hecke eigen-
values a,; and curves with very large c4, cg invariants require working to higher
precision with more a, needing to be computed.

Certain values of N are known not to be possible conductors (specifically, N
which are divisible by 2° or by 3¢ or by p? with p > 5) and these are skipped.

3 Summary of data and highlights of results

3.1 Availability of the data

Full data is available from [9]. The data is mostly in plain ascii files for ease
of use by other programs, rather than in typeset tables as in the book. A
mirror is maintained by William Stein at http://modular.math.washington.
edu/cremona/. (Stein’s Modular Forms Database at http://modular.math.
washington.edu/Tables/ also has links to many other tables.) Currently there
is approximately 106MB of data (as a gzipped tar file) which unpacks to 260MB.
This only includes a, for p < 100, as further values can obviously be recomputed
from the curve itself.

Recently, in collaboration with various other people, other more convenient
ways of accessing and processing the data have been developed.

— A web-based interface by Gonzalo Tornaria is at
http://www.math.utexas.edu/users/tornaria/cnt/cremona.html,
covering N < 100000. This provides an attractive interactive interface to the
data; as a bonus, information on quadratic twists is included.

— The free open-source number theory package pari/gp (see [17]) makes the
full elliptic curve database available (though not installed by default). For
example

(12:05) gp > ellsearch(5077)



%1 = [["s077al", [0, O, 1, -7, 6], [[-2, 3], [-1, 3], [0, 2]11]]
(12:05) gp > ellinit("5077al")

%2 = [0, O, 1, -7, 6, O, -14, 25, -49, 336, -5400, 5077,
(12:05) gp > ellidentify(ellinit([1,2,3,4,5]))

%3 = [["10351al", [1, -1, O, 4, 3], [[2, 3111, [1, -1, O, -1]1]

The output of ellsearch contains all matching curves with their generators.
The output of ellidentify, whose input need not be given in minimal or
standardised form, includes the standard transformation [u,r, s,t] mapping
the input curve to standard minimal form. Full integration of this capability
with standard pari/gp elliptic curve functions is ongoing (thanks to Bill
Allombert).

— William Stein’s free open-source package SAGE (Software for Algebra and
Geometry Experimentation, see [18] and [19]) also has all our data available
and many ways of working with it, including a transparent interface to many
other pieces of elliptic curve software. For example:

sage: E = EllipticCurve("389a")

sage: E

Elliptic Curve defined by y"2 + y = x"3 + x"2 - 2*x over Rational Field
sage: E.rank()

2

sage: E.gens() # Cremona’s mwrank

[(-1 : 1 : 1), (0O:0: 1]

sage: L = E.Lseries_dokchitser(); L(1+I) # Tim Dokchitser’s program
-0.63840993858803874 + 0.71549523920466740%1

sage: E.Lseries_zeros(4) # Mike Rubinstein’s program
[0.00000000000, 0.00000000000, 2.8760990715, 4.4168960843]

— MAGMA has the database for conductors up to 70000 (as of version 2.12-16):

> ECDB:=CremonaDatabase() ;

> NumberQfCurves (ECDB) ;

462968

> LargestConductor (ECDB) ;

70000

> E:=EllipticCurve(ECDB,"389A1");

> E;

Elliptic Curve defined by y™2 + y = x"3 + x"2 - 2%x over Rational Field
> Rank(E);

2

3.2 The naming of curves

Since many authors refer to individual elliptic curves by means of their label in
the database, it is desirable to use a sensible naming convention which is concise,
informative and only changes when absolutely necessary.



The Antwerp tables use a labelling system for the elliptic curves which con-
sists of the conductor followed by a single upper case letter. The order of these
is not easy to define; the curves are grouped into isogeny classes, but one cannot
determine this from the label alone. For example, the curves of conductor 37 are
in two classes, {37A} and {37B,37C,37D}. Clearly this system cannot be used
once we have more than 26 curves per conductor.

For the tables of [7] we introduced an additional layer into the notation. The
isogeny classes have labels similar to those of individual curves in the Antwerp
system, consisting of a single uppercase letter following the conductor. The
curves in the class are indicated by suffixing (or occasionally subscripting) the
class code with an integer. For example at conductor 37 the classes are {37A1}
and {37B1,37B2,37B3}.

The ordering of the isogeny classes is determined by the order in which the
newforms are found with our modular symbols program; this has changed over
the years and so is now, unfortunately, almost impossible to define precisely.
However for all levels between 451 and 130000 the order is lexicographical order
of the Hecke eigenvalues of the newforms, with the eigenvalues of the Atkin-
Lehner involutions W, (for bad primes ¢) listed first, and the eigenvalues for W,
ordered +1,—1 those for T, as 0,41, —1,42,—2,... . It is planned to change
this system for N > 130000 to one based on simple lexicographical order of the
complete eigenvalue sequence, with all primes in their natural order; but there
will be no further change in the labels for N < 130000!

The order of the curves within each isogeny class is likewise difficult to define
precisely. The first curve in each class is the curve variously called the “strong
Weil curve” or the I'h(V)-optimal curve; that is, the curve whose period lattice
(of a minimal model) is exactly that of the normalised newform. After that, the
order is determined by our algorithm for finding isogenies.

In the tables in [7], for N < 200 the Antwerp codes were given alongside the
new ones.

When the tabulation reached N = 1728, where there are for the first time
more than 26 isogeny classes (there are 28), something new was required. With-
out sufficient thought for “future-proofing” we simply followed the sequence
AB,...,Z by AA,BB,...,ZZ and then (at level N = 4800 which has 72 ra-
tional newforms) AAA, BBB, ... and so on. In 2005 this system was becoming
unworkable. At level 100800 there are 418 rational newforms with codes from
100800A to 100800BBBBBBBBBBBBBBBBBBBBBBBBBBB.

It was therefore decided to use a new coding system for the isogeny class
labels, and after widespread consultation the following scheme was decided upon
(thanks to David Kohel in particular). We now use a base 26 number system,
with the letters a, ...,z for the “digits” 0,...,25 and leading as omitted. So
after z comes ba, and the last class at level 100800 has label 100800¢b. For
conductor 37, the classes are now {37al} and {37b1, 37b2,37b3}. When we reach
a conductor where the number of classes is more than 262 = 676, all we need do
is follow zz with baa. [In the Stein-Watkins database of elliptic curves there are
conductors with many thousands of isogeny classes.]



Lower case letters were used to avoid confusion between old and new coding
systems; so (happily) the only difference for curves of conductor less than 1728
is the change of case.

The online tables have been altered to reflect this change of coding, as have
the databases available in SAGE and pari/gp, but MAGMA V2.12 still uses the
old system.

3.3 Numbers of curves

In Table 1 we give the numbers of isogeny classes of curves for ranges of con-
ductors of the form 10000k < N < 10000(k + 1), together with the numbers for
each value of the rank. One very remarkable feature is that the number in each
range is close to constant. This feature is maintained in smaller ranges: in each
range of 1000 consecutive conductors there are very close to 4400 isogeny classes
of curves.

range of N # r=0 r=1r=2r=3

0-9999 | 38042 | 16450 19622 1969 1
10000-19999 | 43175 | 17101 22576 3490
20000-29999 | 44141 17329 22601 4183 28
30000-39999 | 44324 | 16980 22789 4517 38
40000-49999 | 44519 | 16912 22826 4727 54
50000-59999 | 44301 16728 22400 5126 47
60000-69999 | 44361 16568 22558 5147 88
70000-79999 | 44449 | 16717 22247 5400 85
80000-89999 | 44861 17052 22341 5369 99
90000-99999 | 43651 16370 21756 5442 83

100000-109999 | 44274 | 16599 22165 5369 141
110000-119999 | 44071 16307 22173 5453 138
120000-129999 | 44655 | 16288 22621 5648 98

0-129999 | 568824 | 217401 288675 61840 908

Table 1. Numbers of isogeny classes of curves, by rank

The chart in Figure 1 shows the overall distribution of ranks.

In Table 2 we give the total number of curves up to isomorphism. This reveals
that the average size of the isogeny classes found is currently about 1.487. This
average seems to be steadily but gradually decreasing (the value for N < 1000
was just over 2.0). Mark Watkins has pointed out that if one considers curves in
a large box with |cs| < X? and |eg| < X3, then the average size of the isogeny
class tends to 1 as X — oo. Also, Duke has shown in [12] that almost all curves



rank 0

rank 2

Fig. 1. Overall distribution of ranks

(ordered in this way) have no exceptional primes, and in particular no rational
isogenies.

The sizes of individual isogeny classes are given in Table 3. Here we clas-
sify isogeny classes by the maximal degree D of an isogeny (with cyclic kernel)
between curves in the class. For each possible value of D, there is a uniquely
determined shape of the graph of curves and isogenies of prime degree between
them. (See Table 1 of Antwerp IV for examples of most of these.)

3.4 Mordell-Weil groups

For almost all the elliptic curves found we have determined the full Mordell-Weil
group. In a very small number of cases we can only (at present) guarantee that
the generators listed in the tables generate a subgroup of finite index. In all cases
where the analytic rank is 2 or 3 we have verified by 2-descent that the rank is
equal to the analytic rank. When the analytic rank is 0 or 1 this is known to be
true by results of Rubin, Kolyvagin and Gross and Zagier.

In most cases of positive rank, searching for points suffices to find the ex-
pected number of independent generators, following which we apply a saturation
procedure to obtain the full Mordell-Weil group. The exceptional cases are those
for which we were not able to determine a bound on the index, on account of
the bound on the difference between the logarithmic and canonical heights be-



range of N

# isogeny classes

# isomorphism classes

0-9999 38042 64687
10000-19999 43175 67848
20000-29999 44141 66995
30000-39999 44324 66561
40000-49999 44519 66275
50000-59999 44301 65393
60000-69999 44361 65209
70000-79999 44449 64687
80000-89999 44861 64864
90000-99999 43651 63287

100000-109999 44274 63410
110000-119999 44071 63277
120000-129999 44655 63467

0-129999 568824 845960

Table 2. Numbers of isogeny and isomorphism classes of curves

D | Size | # classes %
1 1 372191 | 65.43
2 2 123275 | 21.67
3 2 31372 5.52
4 4 27767 | 4.88
5 2 2925 0.51
6 4 3875 0.68
7 2 808 0.14
8 6 2388 0.42
9 3 2709 0.48

10 4 271 0.05

11 2 60 0.01

12 8 286 0.05

13 2 130 0.02

D | Size | # classes %
14 4 28 | < 0.01
15 4 58 0.01
16 8 270 0.05
17 2 8 | <0.01
18 6 162 0.03
19 2 12 | < 0.01
21 4 30 0.01
25 3 134 0.02
27 4 33 0.01
37 2 20 | < 0.01
43 2 7| <0.01
67 2 41 <0.01
163 2 1] <0.01

Table 3. Distribution of isogeny class sizes and degrees




ing rather large. This situation should improve after full implementation of the
improved height bound algorithm described elsewhere in this volume: see [11].

For curves where searching for points was insufficient, most had rank 1 and
generators could be found using Heegner points. Since 2004, techniques for com-
puting Heegner points of large height have improved very significantly, thanks to
work of Delaunay and Watkins. The MAGMA implementation is now extremely
fast and we have used it extensively for all the larger generators in the tables.

The current record is curve 108174¢2, whose generator P has canonical
height h(P) = 1193.35. Here P = (a/c?,b/c?) where

— —13632833703140681033503023679128670529558218420063432397971439281876168936925608099278686103768271165751
437633556213041024136275990157472508801182302454436678900455860307034813576105868447511602833327656978462
242557413116494486538310447476190358439933060717111176029723557330999410077664104893597013481236052075987
42554713521099294186837422237009896297109549762937178684101535289410605736729335307780613198224770325365111
296070756137349249522158278253743039282375024853516001988744749085116423499171358836518920399114139315005

b — 776845386159678589635077615346492181601035042768002014396646962333772688446303892162606526955979081249211
185106671917236143678971202347339963247386055808925185619325909681380265508543158979491984235466881248491
978341526711100575326744746030922470291782156359389005809065313914236892470866399096616908015986267206085
816145609347461468770147859622405813347969542380216159923828490925517451952455079424426512616714569247069
065790676549942365146817589522964032348349807255751358289869629122053879780510640219504941970766697032823
589255263953926885142009701275092664710953135501372398976396568319085695054751879368605289437600720585853
465424006259176930980665902501637183477157293942231705607887213321716750749368884791336280387610317598902
0330254326477036682714837827401377115084796691,

C = 113966855669333292896328833690552943933212422262287285858336471843279644076647486592460242089049033370292
485250756121056680073078113806049657487759641390843477809887412203584409641844116068236428572188929747

7694986150009319617653662693006650248126059704441347
In MacGMa, finding this generator is as easy (and quick) as this:

> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]) ;
> time HeegnerPoint (E);

true (-13632833.../12988444... : 77684538.../14802521... : 1)

Time: 36.340

At the other extreme, the minimal height of a generator is for curve 3990v1 =
[1,1,1,-125615,61201397], whose generator (7107, —602054) has canonical height 0.0089.
In the small number of cases where curves of rank greater than 1 have gen-
erators too large to be found easily by searching, we found the generator using
2-descent and in some cases 4-descent. The latter, for which algorithms were
developed by Siksek and Womack, is now efficiently implemented in MAGMA.

3.5 Torsion structures

The distribution of the 15 possible structures for the torsion subgroups of the
curves is given in Table 4. Here C,, denotes a cyclic group of order n.



Structure | # curves %
Ci 432622 51.14

Cs 344010 40.67

Cs 18512 2.19

Cy 12832 1.52

Co x Co 33070 3.91
Cs 698 0.08

Cs 3155 0.37

Cr 50 | < 0.01

Cs 101 0.01

Ca x Cy 793 0.09
Cy 16 | < 0.01

Cho 28 | < 0.01

Ci2 11 | <0.01

Co x Cg 58 | < 0.01
Cy x Cg 4 | <0.01
Odd 451898 53.42
Even 394062 46.58
All 845960 | 100.00

Table 4. Torsion structures




3.6 Degrees of modular parametrizations

As already mentioned, for most of the range the modular parametrization degrees
were computed using a program of Mark Watkins (see [25] for the method).
Here we only mention that the largest degree so far is for 96054%1, for which
deg(p) = 32035843840 = 28 - 5. 7-112- 13- 2273

3.7 (Analytic) orders of III

For each curve E in the tables, we have computed all the quantities appearing
in the Birch-Swinnerton-Dyer conjecture for F, with the exception of the or-
der of the Tate-Shafarevich group III. It is customary to define the “analytic
order of III” to be the order predicted by the Birch—Swinnerton-Dyer conjec-
ture, which we can determine from this data. In the case of curves of rank 0
this is computed as an exact rational number, which turns out in every case to
be an integral perfect square. For curves of positive rank it is computed as a
floating-point approximation (using approximations for the regulator, the real
period and L") (F, 1)); we again always find a value close to an integer which is
a perfect square. In Table 5 below, we do not distinguish between the different
status of these values. The current record is 676 = 262 for curve 95438al (which
has rank 0 so this is an exact value).

111
2% | 37074 2
3% | 11512 1§2 g
4% | 4013 162 p
52| 1954 5
5 17 4
6 426 5
5 19 2
7 468 5
9 20 3
8 250 9
5 21 2
9 85 9
2 23 4
10 52 262 1
112 73
122 20
132 19 all > 1 | 55979

Table 5. Analytic orders of 111

We should also mention here recent work of Stein and others (see [20])
towards verifying precisely the Birch—-Swinnerton-Dyer conjecture for non-CM
curves of rank at most 1 and conductor up to 1000.



3.8 The Manin constant

Recall that the Manin constant for an elliptic curve E of conductor N is the
rational number ¢ such that

©*(wg) = c(2mif(z)dz),

where wg is a Néron differential on F, f is the normalized newform for I'H(N)
associated to F, and ¢ : Xo(N) — E is the modular parametrization. A long-
standing conjecture is that ¢ = 1 for all elliptic curves over QQ which are optimal
quotients of Jyo(N) (or “strong Weil curves” in the older terminology). A result
already cited [13] is that ¢ € Z, and there are many results restricting the primes
which may divide c.

Recent developments, described in [1], have strengthened these conditions
considerably. Also in [1] there is an account of numerical verifications we have
carried out which establish the conjecture for most of the curves in our tables.
The following result is taken from [1].

Theorem 1. (a) For all N < 60000, every optimal elliptic quotient of Jo(N)
has Manin constant equal to 1.

(b) For all N in the range 60000 < N < 130000, every optimal elliptic quotient
of Jo(N) has Manin constant equal to 1, except® for the following cases where
the Manin constant is either 1 or 2:

67664, 71888¢, 729164, 750924, 85328, 864524, 961164,
1062920, 1115724, 115664a, 121168¢, 125332a.

In each of the 12 undecided cases listed, the isogeny class consists of two curves
linked by 2-isogenies, and we have not yet verified which of the two curves is the
optimal quotient of Jo(NN). See [1] for details.
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