
APPENDIX TO CHAPTER II

EXAMPLES

We give here some worked examples of the methods described in the preceding chapter,
to illustrate and clarify the different situations which arise. The first example is N = 11,
which is the first non-trivial level; here we give most detail. Then we consider N = 33, where
we encounter oldforms and more complicated M-symbols, and N = 37, where there are two
newforms, one of which has L(f, 1) = 0, necessitating a different method of computing Hecke
eigenvalues. Finally we look at a square level, N = 49, to illustrate the direct method of
computing periods.

Example 1: N = 11

For simplicity we will only work in H(11), rather than the smaller quotient space H+(11).
The M-symbols for N = 11 are (c : 1) for c modulo 11 and (1 : 0), which we abbreviate as (c)
and (∞) respectively, with |c| ≤ 5. (Similarly with other prime levels). The 2-term and 3-term
relations (2.2.6) and (2.2.7) are as follows.

(0) + (∞) = 0

(1) + (−1) = 0

(2) + (5) = 0

(−2) + (−5) = 0

(3) + (−4) = 0

(−3) + (4) = 0

(0) + (∞) + (−1) = 0

(1) + (−2) + (5) = 0

(2) + (4) + (−4) = 0

(3) + (−5) + (−3) = 0

Solving these equations we can express all 12 symbols in terms of A = (2), B = (3) and
C = (0):

(0) = C

(∞) = −C

(1) = (−1) = 0

(2) = (−2) = A

(5) = (−5) = −A

(3) = B

(−3) = A − B

(4) = B − A

(−4) = −B

There are two classes of cusps, [0] and [∞], with [a/b] = [0] if 11 - b and [a/b] = [∞] if 11 | b.
Hence δ((c)) = δ({0, 1/c}) = [1/c] − [0] = 0 for c 6≡ 0. It follows that

H(11) = ker(δ) = 〈A, B〉 ,

with 2g = dim H(11) = 2, so that the genus is 1. There is therefore one newform f . This
makes the rest of the calculation simpler, as we do not have to find and split off eigenspaces.

The conjugation ∗ involution maps (c) 7→ (−c), so A∗ = A and B∗ = A − B. This has

matrix

(

1 1
0 −1

)

with respect to the basis A, B. The +1- and −1-eigenspaces are generated
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by A and A− 2B respectively, and we have left eigenvectors v+ = (2, 1) and v− = (0, 1). Thus
the period lattice is Type 1 (non-rectangular), and Ω(f) = Ω0(f) = 〈A, f〉.

If we had worked in H+(11), viewed as the quotient H(11)/H−(11), by including relations
(c) = (−c), the effect would be to identify (c) and (−c). This gives a 1-dimensional space
generated by B with A = 2B, where the bars denote the projections to the quotient. Notice
that although B is a generator here, the integral of f over B is not a real period; its real
part is half the real period. However we do still have Ω(f) = 〈B + B∗, f〉 = 2Re 〈B, f〉, so we
could compute Ω(f) in this context without actually knowing whether it was 1 or 2 times the
smallest real period.

To compute Hecke eigenvalues we may work in the subspace 〈A〉; since this subspace is
conjugation invariant (being the +1-eigenspace) we will have Tp(A) = apA for all p 6= 11. We
first compute T2 explicitly. The first method, converting the M-symbol A = (2 : 1) to the
modular symbol {0, 1/2}, gives:

T2(A) = T2

({

0,
1

2

})

= {0, 1} +

{

0,
1

4

}

+

{

1

2
,
3

4

}

= {0, 1} +

{

0,
1

4

}

+

{

1

2
, 1

}

+

{

1,
3

4

}

= (1 : 1) + (4 : 1) + (1 : 2) + (−4 : 1)

= (1) + (4) + (−5) + (−4)

= 0 + (B − A) + (−A) + (−B) = −2A,

so that a2 = −2. Alternatively, using the Heilbronn matrices from Section 2.4, we compute:

T2(A) = T2((2 : 1)) = (2 : 1)R2

= (2 : 1)

(

1 0
0 2

)

+ (2 : 1)

(

2 0
0 1

)

+ (2 : 1)

(

2 1
0 1

)

+ (2 : 1)

(

1 0
1 2

)

= (2 : 2) + (4 : 1) + (4 : 3) + (3 : 2)

= (1) + (4) + (5) + (−4)

= 0 + (B − A) + (−A) + (−B)

= −2A.

Now (1 + 2 − a2)L(f, 1) = 〈{0, 1/2} , f〉 = 〈A, f〉 = Ω(f), giving

L(f, 1)

Ω(f)
=

1

5
.

For all primes p 6= 11 we will evaluate µp =
∑p−1

a=0 {0, a/p} = npA for a certain integer np,
since then also 1/5 = np/(1 + p − ap), giving

ap = 1 + p − 5np.

At this stage we already know that the corresponding elliptic curve has rank 0, and that
1 + p − ap ≡ 0 (mod 5) for all p 6= 11, so that it will possess a rational 5-isogeny.

To save time, we can use the fact that {0, a/p}∗ = {0,−a/p}; thus for odd p we need only
evaluate half the sum, say

µ′

p =

(p−1)/2
∑

a=1

{

0,
a

p

}

,
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and then set µp = µ′
p + (µ′

p)
∗.

For p = 3, we have µ′
3 = {0, 1/3} = (3 : 1) = (3) = B, so µ3 = B + B∗ = A, giving n3 = 1

and a3 = 1 + 3 − 5n3 = −1.
For p = 5 we compute:

{

0,
1

5

}

= (5 : 1) = (5) = −A;

{

0,
2

5

}

=

{

0,
1

2

}

+

{

1

2
,
2

5

}

= (2 : 1) + (−5 : 2) = (2) + (3) = A + B;

µ′

5 = (−A) + (A + B) = B;

µ5 = B + B∗ = A, so that n5 = 1;

a5 = 1 + 5 − 5n5 = 1.

Similarly, with p = 7 we have n7 = 2, so that a7 = 1 + 7 − 5n7 = −2, and with p = 13 we
have n13 = 2 so that a13 = 4.

These computations can also be carried out using Heilbronn matrices, by applying the Hecke
operators directly to C = (0 : 1) = {0,∞}, as follows. Once we know that a2 = −2, we have

−2C = T2(C) = T2((0 : 1)) = (0 : 1)R2 = (0 : 2) + (0 : 1) + (0 : 1) + (1 : 2) = 3C − A,

giving C = 1
5A in agreement with the ratio L(f, 1)/Ω(f) found earlier. Similarly, using the

Heilbronn matrices R3 listed in Section 2.4, we find

a3C = T3(C) = (0 : 1)R3

= (0 : 3) + (0 : 1) + (1 : 3) + (0 : 1) + (0 : 1) + (1 : −3)

= C + C + (B − A) + C + C + (−B)

= 4C − A = −C,

giving a3 = −1 again.
For the prime q = 11 we compute the involution W11 induced by the action of the matrix

(

0 −1
11 0

)

:

W11(A) =

(

0 −1
11 0

) {

0,
1

2

}

=

{

∞,
−2

11

}

= {∞, 0} +

{

0,
−1

5

}

+

{−1

5
,
−2

11

}

= (1 : 0) + (−5 : 1) + (11 : 5)

= (∞) + (−5) + (0)

= −A,

so that the eigenvalue ε11 of W11 is −1. In fact, this was implicit earlier, since L(f, 1) 6= 0
implies that the sign of the functional equation is +1, which is minus the eigenvalue of the
Fricke involution W11.

The Fourier coefficients a(n) = a(n, f) for 1 ≤ n ≤ 16 are now given by the following table.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a(n) 1 −2 −1 2 1 2 −2 0 −2 −2 1 −2 4 4 −1 −4

Here we have used multiplicativity, and:

a(11) = −ε11 = +1;

a(4) = a(2)2 − 2a(1) = 2;

a(8) = a(2)a(4)− 2a(2) = 0;

a(16) = a(2)a(8)− 2a(4) = −4;

a(9) = a(3)2 − 3a(1) = −2.

We know that the period lattice Λf has a Z-basis of the form [ω1, ω2] = [2x, x + iy], where
ω1 = Pf (A) and ω2 = Pf (B). We can compute the real period ω1 = Ω(f) = 5L(f, 1) by
computing L(f, 1):

L(f, 1) = 2

∞
∑

n=1

a(n)

n
tn

where t = exp(−2π/
√

11) = 0.15 . . . . Using the first 16 terms which we have, already gives
this to 13 decimal places:

L(f, 1) = 0.2538418608559 . . . ;

thus
ω1 = Ω(f) = 1.269209304279 . . . .

For the imaginary period y we twist with a prime l ≡ 3 (mod 4). Here l = 3 will do, since

γ3 =

{

0,
1

3

}

−
{

0,
−1

3

}

= (3) − (−3) = −A + 2B 6= 0.

To project onto the minus eigenspace we take the dot product of this cycle (expressed as a row
vector (−1, 2)) with v− = (0, 1) to get m−(3) = 2. Hence

y =
1

2i
P (3, f) =

√
3

2
L(f ⊗ 3, 1).

Summing the series for L(f ⊗ 3, 1) to 16 terms gives only 4 decimals:

L(f ⊗ 3, 1) = 1.6845 . . . .

This is less accurate than L(f, 1) since this series is a power series in exp(−2π/3
√

11) = 0.53 . . . ,
compared with 0.15 . . . . Hence y = 1.4588 . . . , so that

ω2 = 0.634604652139 . . . + 1.4588 . . . i.

So far we have only used the Hecke eigenvalues ap for p ≤ 13, and only 16 terms of each
series. If we use these approximate values for the period lattice generators ω1 and ω2 we already
find the approximate values c4 = 495.99 and c6 = 20008.09 which round to the integer values
c4 = 496 and c6 = 20008. Taking the first 25 ap and the first 100 terms of the series gives

c4 = 495.9999999999954 . . . and c6 = 20008.0000000085.
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The exact values c4 = 496 and c6 = 20008 are the invariants of an elliptic curve of conductor 11,
which is in fact the modular curve Ef :

y2 + y = x3 − x2 − 10x − 20.

This is the first curve in the tables, with code 11A1 (or Antwerp code 11B). The value
L(f, 1)/Ω(f) = 1/5 agrees with the value predicted by the Birch–Swinnerton-Dyer conjecture
for L(Ef , 1)/Ω(Ef ) , provided that Ef has trivial Tate–Shafarevich group.

We now illustrate the shortcut method presented in Section 2.11, where we guess the
imaginary period and lattice type without computing H(11). Having computed P (3, f) =
2.9176 . . . i which is certainly non-zero, we consider the lattices 〈x, yi〉 and 〈2x, x + yi〉, where
2x = 1.2692 . . . (from above) and yi = P (3, f)/m−, for m− = 1, 2, 3, . . . . With m− = 1
we do not find integral invariants, but for m− = 2 and lattice type 1 we find the curve
Ef = [0,−1, 1,−10,−20] given above1.

Using the first variant of the method, where we do not even know x, we can take l+ = 5
since P (5, f) = 6.346 . . . 6= 0. The correct value of m+ here is 10; if we do not know this, but
try m+ = 1, 2, 3 . . . in a double loop with m−, the first valid lattice we come across is with
(m+, m−) = (2, 2) and type 1, which leads to the curve E ′ = [0,−1, 1, 0, 0], also of conductor 11;
this is 5-isogenous to the “correct” curve Ef , which comes from (m+, m−) = (10, 2) and type 1.

We may also consider the ratios P (l, f)/P (3, f) for other primes l ≡ 3 (mod 4); we restrict
to those l satisfying

(

−11
l

)

=
(

l
11

)

= +1, since otherwise P (l, f) is trivially 0 (since the sign of
the functional equation for the corresponding L(f ⊗ χ, s) is then −1). We find the following
table of values (rounded: they are only computed approximately):

l 3 23 31 47 59 67 71 103 163 179 191 199 223 251

P (l, f)

P (3, f)
1 1 1 0 1 9 1 0 4 25 1 4 1 1

The zero values for l = 47 and l = 103 indicate that the corresponding twists of the newform
f have positive even analytic rank (one can check that the corresponding twists of the curve
Ef do indeed have rank 2). As all these values are integral here (a priori they are only known
to be rational) we do not find any nontrivial divisor of m− (which we know in fact equals 2).
The fact that all the integers are perfect squares is an amusing observation, but has a simple
explanation in terms of the numbers appearing in the Birch–Swinnerton-Dyer conjecture for
the twists of Ef .

There is one other curve E ′′ isogenous to Ef in addition to E′ (found above). If the period
lattice of Ef = [0,−1, 1,−10,−20] is 〈2x, yi〉 with x = 0.6346... and y = 1.4588..., then
E′ = [0,−1, 1, 0, 0] has period lattice 〈10x, 5x + yi〉, and E ′′ = [0,−1, 1,−7820, 263580] has
lattice 〈x/5, 2x/5 + yi〉. These curves are linked by 5-isogenies Ef ↔ E′ and Ef ↔ E′′.

Finally, we compute the degree of the modular parametrization ϕ: X0(11) → Ef . Of course,
this is obviously 1, since the modular curve X0(11) has genus 1, so that ϕ is the identity map
in this case; but this example will serve to illustrate the general method.

The twelve M-symbols form 4 triangles which we choose as follows:

(1, 0), (−1, 1), (0, 1); (1, 1), (−2, 1), (−1, 2);

(1, 2), (−3, 1), (−2, 3); (1, 3), (−4, 1), (−3, 4).

1Here, [a1, a2, a3, a4, a6] denote the Weierstrass coefficients of the curve; see Chapter 3.
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There are two τ -orbits, corresponding to the two cusps at ∞ (of width 1) and at 0 (of width 11).
The first contributes nothing. The second is as follows:

(1, 0) 7→ (1, 1) 7→ (1, 2) 7→ (1, 3) 7→ (1, 4) ≡ (−2, 3) 7→ (−2, 1) 7→ (−2,−1)

≡ (−3, 4) 7→ (−3, 1) 7→ (−3,−2) ≡ (−4, 1) 7→ (−4,−3) ≡ (−1, 2) 7→ (−1, 1) 7→ (1, 0).

There are four jump matrices coming from the above sequence. From (1, 4) ≡ (−2, 3) we obtain

δ1 =

(

0 −1
1 4

) (

1 −1
−2 3

)−1

=

(

−2 −1
11 5

)

;

the others are δ2 =

(

4 1
11 3

)

, δ3 =

(

−5 −1
11 2

)

and δ4 =

(

−3 1
11 −4

)

. Using modular

symbols, we can compute the coefficients of Pf (δi) with respect to the period basis ω1, ω2, to
obtain Pf (δ1) = −ω1, Pf (δ2) = ω2, Pf (δ3) = ω1, and Pf (δ4) = −ω2. Hence

deg(ϕ) =
1

2

(∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

+

∣

∣

∣

∣

0 0
−1 1

∣

∣

∣

∣

+

∣

∣

∣

∣

0 −1
−1 0

∣

∣

∣

∣

+

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

+

∣

∣

∣

∣

1 −1
0 0

∣

∣

∣

∣

+

∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

)

=
1

2
(1 + 0 − 1 + 1 + 0 + 1) = 1,

as expected.

Example 2: N = 33

Since 33 = 3·11, the number of M-symbols is 48 = 4·12, consisting of 33 symbols (c) = (c : 1),
13 symbols (1 : d) with gcd(d, 33) > 1, and the symbols (3 : 11) and (11 : 3). (In fact, whenever
N is a product pq of 2 distinct primes, the M-symbols have this form, with exactly two symbols,
(p : q) and (q : p) not of the form (c : 1) or (1 : d)).

There are four cusp classes represented by 0, 1/3, 1/11 and ∞, with the class of a cusp a/b
being determined by gcd(b, 33). (Similarly, whenever N is square-free, the cusp classes are in
one-one correspondence with the divisors of N).

Using the two-term and three-term relations, and including the relations (c : d) = (−c : d),
we can express all the M-symbols in terms of six of them, and ker(δ+) = 〈(7), (2), (15)− (9)〉.
Hence H+(33) is three-dimensional. We know there will be a two-dimensional oldclass coming
from the newform at level 11, so there will also be a single newform f at this level.

If we compute the images of the basis modular symbols {0, 1/7}, {0, 1/2} and {1/9, 1/15}
under T2 and W33, we find that they have matrices

T2 =





−2 0 0
0 1 2
0 0 −2



 and W33 =





1 0 0
0 −1 0
1 0 −1



 .

T2 has a double eigenvalue of −2, coming from the oldforms, which we ignore, and also the
new eigenvalue a2 = 1 with left eigenvector v = (0, 1, 0). The corresponding eigenvalue for
W33 is ε33 = −1. Hence the sign of the functional equation is +, and the analytic rank is even.
Moreover since the eigencycle for a2 is the second basis element, which is {0, 1/2} = µ2, we
have 2(1 + 2 − a2)L(f, 1) = Ω(f), so that

L(f, 1)

Ω(f)
=

1

4
.
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In particular, L(f, 1) 6= 0, so that the analytic rank is 0. Note that because we have factored
out the pure imaginary component, we do not usually know at this stage whether the least
real period Ω0(f) is equal to Ω(f) or half this; all we can say is that Ω(f)/2 = Re 〈{0, 1/2}, f〉
is the least real part of a period (up to sign). But in this case, {0, 1/2} is certainly an integral
cycle, and since 〈{0, 1/2}, f〉 is real, we can in fact deduce already that the period lattice is of
type 2 (rectangular) with Ω(f) = 2Ω0(f).

To compute more ap we express each cycle µp as a linear combination of the basis and
project to the eigenspace by taking the dot product with the left eigenvector v, which just
amounts in this case to taking the second component. In this way we find a5 = −2, a7 = 4,
a13 = −2, and so on. For the involutions W3 and W11 we can either compute their 3 × 3
matrices or just apply them directly to the eigencycle {0, 1/2}, and we find that ε3 = +1 and
ε11 = −1. In fact we already knew that the product of these was ε33 = −1, so we need not
have computed ε11 directly, though doing so serves as a check.

Now we go back and compute the full space H(33), which is six-dimensional, with basis

{

0,
1

7

}

,

{

0,
1

4

}

,

{

0,
−1

4

}

,

{

1

12
,
−1

6

}

,

{

1

12
,
−1

3

}

,

{

0,
1

10

}

.

By computing the 6× 6 matrices of conjugation and T2, we may pick out the left eigenvectors

v+ = (0, 1,−1, 1, 2, 0) and v− = (−1, 0, 0, 2, 1, 1).

Since these vectors are independent modulo 2, it follows (as expected) that the period lattice
is type 2, with a Z-basis of the form [ω1, ω2] = [x, yi].

Firstly, x = Ω0(f) = Ω(f)/2 = 2L(f, 1). Summing the series for L(f, 1) we obtain L(f, 1) =
0.74734 . . . , so that ω1 = x = 1.49468 . . . and Ω(f) = 2x = 2.98936 . . . . Then we use the
twisting prime l = 7: the twisting cycle

γ7 =
6

∑

a=1

(a

7

) {

0,
a

7

}

is evaluated in terms of our basis to be (2, 2, 0,−2, 0, 0), whose dot product with v− is −6.

Hence y =
√

7L(f ⊗7, 1)/6. The value of L(f ⊗7, 1) is determined by summing the series to be
3.11212 . . . , so that y = 1.37232 . . . and ω2 = 1.37232 . . . i. If we evaluate these from the first
100 terms of the series, using ap for p < 100, we find the approximate values c4 = 552.99999 . . .
and c6 = −4084.99947 . . . . These round to c4 = 553 and c6 = −4085, which are the invariants
of the curve 33A1: y2 + xy = x3 + x2 − 11x. Notice that this curve has four rational points,
which we could have predicted since the ratio L(f, 1)/Ω(f) = 1/4 implies that 1 + p − ap ≡ 0
(mod 4) for all p 6= 2, 3, 11.

Example 3: N = 37

Since 37 is prime the M-symbols are simple here, as for N = 11. We find that H+(37) is
two-dimensional, generated by A = (8) and B = (13). With this basis the matrices of T2 and
W37 are

T2 =

(

−2 0
0 0

)

and W37 =

(

1 0
0 −1

)

.

Thus we have two one-dimensional eigenspaces, generated by A and B respectively, with eigen-
values (a2 = −2, ε37 = +1) for A and (a2 = 0, ε37 = −1) for B. The left eigenvectors are simply
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v1 = (1, 0) and v2 = (0, 1). Let us denote the corresponding newforms by f and g respectively.
Now {0, 1/2} = 2B, so

L(f, 1)

Ω(f)
= 0 and

L(g, 1)

Ω(g)
=

1

3
.

The fact that ε37(f) = +1 implies that f has odd analytic rank, while the previous line shows
that g has analytic rank 0..

To compute Hecke eigenvalues, the method we used previously would only work for g, so
instead we use the variation discussed in Section 2.9. The cycle {1/5,∞} projects non-trivially
onto both eigenspaces. In fact (1+2−T2){1/5,∞} = −5A−B, so the components in the two
eigenspaces are (−5)/(1 + 2− (−2)) = −1 and (−1)/(1 + 2− 0) = −1/3. Hence by computing
(1 + p − Tp){1/5,∞} = n1(p)A + n2(p)B for other primes p 6= 37, we may deduce that

a(p, f) = 1 + p + n1(p) and a(p, g) = 1 + p + 3n2(p).

In this way we find that the first few Hecke eigenvalues are as follows:

p 2 3 5 7 11 13 17 19 . . .

a(p, f) −2 −3 −2 −1 −5 −2 0 0 . . .

a(p, g) 0 1 0 −1 3 −4 6 2 . . .

Two things can be noticed here: the preponderance of negative values amongst the first few
a(p, f) means that the curve Ef has many points modulo p for small p, which we might expect
heuristically since we know that its analytic rank is odd, and hence positive. Secondly, since
1 + p − a(p, g) ≡ 0 (mod 3) for all p 6= 37, we know that Eg will have a rational 3-isogeny.

Turning to the full space H(37), we find that it has basis 〈(8), (16), (20), (28)〉. Conjugation
and W37 have matrices







0 −1 0 0
−1 0 0 0
0 1 0 1
1 0 1 0






and







0 −1 0 0
−1 0 0 0
1 0 0 −1
0 −1 −1 0







respectively.
For the A eigenspace corresponding to f we find left eigenvectors v+

1 = (−1, 1, 0, 0) and
v−

1 = (−1, 0,−1, 1). These are independent modulo 2, so the period lattice is rectangular, say
[x, yi]. To find x we must twist by a real quadratic character, using a prime l ≡ 1 (mod 4). Here
l = 5 will do: the twisting cycle is {0, 1/5}−{0, 2/5}−{0, 3/5}+{0, 4/5} = (2,−2, 0, 2), whose

dot product with v+
1 is −4, so that x =

√
5L(f ⊗5, 1)/4. For the imaginary period we use l = 3

with twisting cycle (0, 0,−1, 1) and a dot product of 2 with v−

1 , so that y =
√

3L(f ⊗ 3, 1)/2.
Evaluating numerically, using 100 terms of the series and ap for p < 100, we find the values

L(f ⊗ 5, 1) = 5.35486 . . . , so that x = 2.99346 . . . ;

L(f ⊗ 3, 1) = 2.83062 . . . , so that y = 2.45139 . . . ;

and finally,

c4 = 47.9999999996 . . . ,

c6 = −216.000000004 . . . .

The rounded values c4 = 48 and c6 = −216 are those of the curve 37A1, with equation
y2 + y = x3 − x. This curve does have rank 1. We may also check that the analytic rank is 1
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by computing L′(f, 1) by summing the series given in Section 2.13: we find that L′(f, 1) =
0.306 . . . , which is certainly non-zero.

The B eigenspace is handled similarly to the example at level 33. We find v+
2 = (0, 1, 1, 1)

and v−

2 = (1, 1, 0, 0). The period lattice is [x, iy] with x = 3L(g, 1)/2 and y =
√

19L(g⊗19, 1)/4.
The latter needs more terms to compute to sufficient accuracy, as 19 is larger than the twisting
primes we have previously used. Using p < 100 as before we find c4 = 1119.878 . . . , which
rounds to the correct (with hindsight) value 1120, but for c6 we get 36304.495, and neither
36304 nor 36305 is correct. Going back to compute ap for 100 < p < 200 we reevaluate the
series to 200 terms, and find

L(g, 1) = 0.72568 . . . , so that x = 1.08852 . . . ;

L(g ⊗ 19, 1) = 1.62207 . . . , so that y = 1.76761 . . . ;

and hence

c4 = 1120.000008 . . . , and c6 = 36295.99943 . . . .

Now the rounded values c4 = 1120 and c6 = 36296 are the invariants of the curve 37B1 with
equation y2 + y = x3 + x2 − 23x− 50. As expected, this curve does admit a rational 3-isogeny.

Example 4: N = 49

H(49) is two-dimensional, with a basis consisting of the M-symbols (11), (2). Hence there
is a unique newform f at this level, which must be its own −7-twist, or in other words have

complex multiplication by −7. The conjugation matrix with respect to this basis is

(

−1 0
−1 1

)

,

so we take v+ = (1,−2) and v− = (1, 0). Hence the period lattice has the form [2x, x+yi] with
2x = Ω0(f) = Ω(f). Also a2 = 1, so we have L(f, 1)/Ω(f) = 1/2. Hence we may compute the
real period via L(f, 1) as before, and find L(f, 1) = 0.96666 . . . , so that Ω(f) = 1.9333 . . . . But
the method we have used in the earlier examples to find the imaginary period will not work here,
since for every prime l ≡ 3 (mod 4), l 6= 7, we have L(f⊗l, 1) = 0, since χ(−49) = χ(−1) = −1
where χ is the associated quadratic character modulo l.

Instead, we compute periods directly, as in Section 2.10. The cycle (5) = {0, 1/5} is equal to
(11)+(2), from which it follows that 〈(5), f〉 = −x+yi; the coefficients are the dot products of

the vector (1, 1) with v±. Now {0, 1/5} = {0, M(0)} with M =

(

10 1
49 5

)

. Hence the simpler

formula (2.10.5) gives

Pf (M) =

〈{

0,
1

5

}

, f

〉

= −x + yi =
∞
∑

n=1

a(n)

n
e−2πn/49

(

e2πinx2 − e2πinx1

)

where x1 = −5/49 and x2 = 10/49. Summing the first 100 terms as before, we find the values

x = 0.96666 . . . and y = 2.557536 . . . .

Of course, the value of x merely confirms the value we had previously obtained a different way.
These values give, in turn,

c4 = 104.99992 . . . and c6 = 1322.9994 . . . ,
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which round to the exact invariants c4 = 105 and c6 = 1323 of the curve 49A1, which has
equation y2 + xy = x3 − x2 − 2x − 1.

Using the improved formula (2.10.8) with better convergence, gives (also using 100 terms)

x = 0.96665585 . . . and y = 2.55753099 . . . ,

which lead to the better values

c4 = 104.9999992 . . . and c6 = 1322.99998 . . . .

In this computation, we have not exploited the presence of complex multiplication. Notice
that, in fact, y/x =

√
7. Obviously if we had known this it would have given us an easier way

of computing y from x, and hence from L(f, 1). However not all newforms at square levels
have complex multiplication. Some are twists of forms at lower levels (for example, 100A is
the 5-twist of 20A, and 144B is the −3-twist of 48A), which means that we could find the
associated curves more easily by twisting the earlier curve. Others first appear at the square
level in pairs which are twists of each other (for example, 121A and 121C are −11-twists of
each other, and 196B is the −7-twist of 196A). One could probably find both periods of all
such forms by looking at suitable twists to moduli not coprime to the level, but we have not
done this systematically, as the more direct method was adequate in all the cases we came
across in compiling the tables.

In practice we always computed the Hecke eigenvalues for p < 1000 at least, with a larger
bound for higher levels. In some cases, particularly when the target values of c4 or (more
usually) c6 were large, and especially when a large twisting prime was needed, we needed to
sum the series to several thousand terms before obtaining the vales of c4 and c6 to sufficient
accuracy.

These four examples exhibit essentially all the variations which can occur. The only problem
with the larger levels is one of scale, as the number of symbols and the dimensions of the spaces
grow. A large proportion of the computation time, in practice, is taken up with Gaussian
elimination. This is why we have tried wherever possible to reduce the size of the matrices
which occur: first by carefully using the 2-term symbol relations to identify symbols in pairs as
early as possible, and secondly by working in H+(N) during the stage where we are searching
for Hecke eigenvalues. The symbol relation matrices are very sparse (with at most three entries
per row); sparse matrix techniques, which we use in our implementation, help greatly here.
For finding eigenvectors of the Hecke algebra, however, we use a completely general purpose
exact Gaussian elimination procedure.

The second time-consuming stage is when we are computing a large number of Hecke eigen-
values, where we call a very large number of times the procedures to convert rational numbers
(cusps) to M-symbols and look these up in tables to find their coordinates with respect to the
symbol basis. It is vital that these procedures are written efficiently; during the preparation
of the tables, many great improvements in the efficiency of the program were achieved over a
period of several months.


