
Turbulene of near-inertial waves in theontinuously strati�ed �uidS.B. Medvedev, V. Zeitlinto appear in Phys.Lett. A



Plan1. Motivation2. A brief history of the weak turbulene (WT) approah to internalinertia-gravity waves (IGW)3. Primitive equations (PE) and their Hamiltonan struture4. Wave-vortex deoupling and wave-wave interations5. Near-inertial waves (NIW)6. Wave-turbulene of waves with sale-invariant anisotropidispersion law7. WT spetra for NIW



1 MotivationQuasi-inertial osillations are ubiquitous in the atmosphere and theoeans. The measured frequeny spetra of atmospheri and oeaniperturbations always exhibit a pronouned peak at the (loal) inertialfrequeny, f . The physial reason of the persistene of theseosillations is simple: the minimal frequeny of inertia-gravity wavesin the atmosphere, or oean, is f , and the dispersion surfae has aminimum at this value. Hene, the group veloity of near-inertialwaves (NIW) is lose to zero and they need long times to beevauated.Motivated by the persistene of NIW, we onsider below theirkinetis, assuming a large ensemble of weakly-nonlinear NIW withrandom phases. We apply the wave-turbulene (WT) tehnique toobtain the stationary energy spetra from the kineti equation (KE)



for the wave-density.



2 WT approah to IGW: a brief reviewWT approah to internal inertia-gravity waves (IGW) has a longhistory whih is intertwinned with strong turbulene approah torotating strati�ed �ows (Herring and ollaborators, Lesieur andollaborators, Carnevale and ollaborators, et et)Muller, Olbers & ollaborators (Hasselmann's shool, e.g. Muller andOlbers, 1975, Olbers, 1976), and MComas (MComas & Muller,1981) established kineti equation by using Hamiltonian struture inLagrangian variables (orret inorporation of the pressure onstraintwas problemati), and studied its asymptotis/approximate/numerisolutions. Critisized by Holloway (1980,1984).Pelinovsky & Raevsky (1977) obtained the anisotropi IGWpower-law spetra from dimensional reasons using Clebsh variables.Voronovih (1979) also used Clebsh variables to obtain the KE.



Clebsh variables are also subjet to onstraints.Daubner & Zeitlin (1996), and Caillol & Zeitlin (2000) used diretaveraging of the eqns of motion to derive KE and used Kuznetsovmethod to obtain the anisotropi power-law spetra for IGW. Theyalso showed deoupling of wave and vortex omponents of motion inlow orders, and thus possibility to apply WT (lot of work on thedeoupling: Riley and oll., Majda and oll., Mahalov and oll.)Y. Lvov & Tabak, 2001, 2004 rederived KE and spetra by Kuznetsovmethod in isopynal oordinates by using the Hamiltonian form byHolm & Long (1984) and wave-projetion by Falkovih & Medvedev(1992). They were apparently unaware of previous literature.For tehnial reasons most of the earlier results were obtained in the(horizontally) short wave limit, when rotation e�ets may benegleted (opposite to NIW limit).



3 PE in density/enthropy oordinates,and their Hamiltonian struture

3.1 Primitive equationsContinuously strati�ed non-dissipative hydrostati primitive PE(oeani ase) :

dv⊥
dt

+ fẑ × v⊥ +
1

ρ0
∇⊥p = 0, (1)

1

ρ
pz + g = 0, (2)

∇⊥v⊥ + wz = 0, (3)

dρ

dt
= 0,

d

dt
= ∂t + (v⊥,∇⊥) + w∂z (4)



Here ρ0 is a large onstant bakground �uid density, and ρ is itssmall variation: ρ0 ≫ (ρ− ρ0) (the Boussinesq approximation), p isthe hydrostati pressure, v⊥ and w are horizontal and vertialomponents of the �uid veloity.



3.2 PE in isopynal/isentropi oordinates

ρ � independent vertial oordinate, z � new dependent variable. →
ψρ = gz, ψ = p+ gρz, (5)where ψ is the Montgomery stream-funtion. Fluid veloity:

(u, v, w̃) =
d

dt
(x, y, ρ). (6)

⇒ w̃ = 0, a well-known advantage of the isopynal (isentropi)oordinates. The "old" vertial veloity:
w =

dz

dt
= zt + uzx + vzy. (7)Horizontal motion, D

Dt = ∂t + (v⊥,∇⊥):
Dv⊥
Dt

+ fẑ × v⊥ +
1

ρ0
∇⊥ψ = 0. (8)



Mass onservation:
ρ0dxdydz = ρ0zρdxdydρ, (9)whih implies:

(ρ0zρ)t + (uρ0zρ)x + (vρ0zρ)y = 0. (10)Therefore

ut + uux + vuy − fv + (ψ/ρ0)x = 0, (11)

vt + uvx + vvy + fu+ (ψ/ρ0)y = 0, (12)

(ρ0zρ)t + (uρ0zρ)x + (vρ0zρ)y = 0 ψρ = z. (13)



By introduing the potential vortiity (PV):

q =
f + vx − uy

zρ
, (14)it is easy to see that an arbitrary funtion funtion of density and PV

G(q, ρ) is a Lagrangian invariant:
Gt + uGx + vGy = 0, (15)The loal energy onservation is expressed as:

(

1

2

(

ρ0zρ(u
2 + v2) − gz2

)

)

t

+

(

ρ0zρu

(

u2 + v2

2
+ ψ

))

x

+

(

ρ0zρv

(

u2 + v2

2
+ ψ

))

y

+ (ψzt)ρ = 0.(16)



The Hamiltonian is the energy of the system in the isopynaloordinates:
H =

1

2

∫

(

h(u2 + v2) + gz2
)

dxdydρ, (17)where the pseudo-height h is:
h = ρ0zρ, (18)and the Poisson braket is (Holm & Long, 1989):









u

v

h









t

+ Ĵ









δH/δu = hu

δH/δv = hv

δH/δh = B









= 0. (19)



The Poisson braket operator Ĵ :
Ĵ =









0 −q ∂x

q 0 ∂y

∂x ∂y 0









, (20)

and the variables resulting from funtional di�erentiations of theHamiltonian are the pseudo-height, the PV, and the Bernoullifuntion:

B =
u2 + v2

2
+
ψ

ρ0
. (21)Remarkably, the Poisson braket (20) is idential to that of the RSWmodel (Falkovih & Medvedev, 1992) and the Hamiltonian (17) has asimilar form.



3.3 Wave-vortex deouplingFollowing Falkovih & Medvedev, 1992, we de�ne new dependentvariables: W = (h, ϕ, q), where ϕ is the veloity potential, instead of

U = (u, v, h). Poisson braket beomes:
Ĵ =









0 −1 0

1 ∂′xq∂
′
y − ∂′yq∂

′
x [∇′q∇− q] 1

h

0 1
h [q −∇q∇′] 1

h∂xq∂y
1
h − 1

h∂yq∂x
1
h









. (22)



Here ∂′x = ∂x∇−2, ∂′y = ∂y∇−2, ∇′ = (∂′x, ∂
′
y)T , ∇ = (∇⊥, ∂z) andthe supersript T means matrix transposition. To get (22) from (20)the following rules are applied. First, the hange of variables fromthe old U to new W funtional variables is made. Then theexpressions of W in terms of U are di�rentiated by t and thetransition matrix M is obtained: Wt = MUt. The new Poissonbraket operator Ĵnew = M Ĵold M† follows. Ĵnew is then expressedin terms of the new variables.



From (22) it follows that if the PV is a funtion of density alone

q = q0(ρ), the Poisson braket has onstant oe�ients:

Ĵ =









0 −1 0

1 0 0

0 0 0









. (23)

Hene, on the onstrained manifold q = q0(ρ) we get anonialHamiltonian variables h and ϕ:
∂h

∂t
=
δH

δϕ
,

∂ϕ

∂t
= −δH

δh
. (24)The veloity �eld is determined from

u =
∂ϕ

∂x
− ∂

∂y
∆−1(hq0 − f), v =

∂ϕ

∂y
+

∂

∂x
∆−1(hq0 − f) . (25)



4 Internal inertia-gravity waves

4.1 The state of rest and small perturbationsThe rest state of the system is
u0 = 0, v0 = 0, h0(ρ) = −

(

1

ρ0

dρ̄

dz

)−1

=
g

N2
, q0 = f/h0, (26)where ρ̄ = ρ̄(z) is the density at rest expressed as a funtion of z,

N(ρ) is the (variable) Brunt-Vaisala frequeny
N2 = − g

ρ0

dρ̄

dz
.



Consider a small perturbation of the rest state η = h− h0. Then

u =
∂ϕ

∂x
− f

∂

∂y
∆−1 η

h0
, v =

∂ϕ

∂y
+

∂

∂x
∆−1 η

h0

(27)and the kineti energy has a power expansion starting at theseond-order term. The expansion of the potential energy around thestate of rest ontains the �rst-order terms:
z2 =

(

∂−1
ρ

h0 + η

ρ0

)2

=

(

∂−1
ρ

h0

ρ0

)2

+2

(

∂−1
ρ

h0

ρ0

)(

∂−1
ρ

η

ρ0

)

+

(

∂−1
ρ

η

ρ0

)2

.(28)



Due to the fat that the system onserves the generalized mass

M =

∫

L(ρ)hdxdydρ,where L(ρ) is an arbitrary funtional depending on ρ, the linearterms may be removed by introduing the available potential energy.The wave Hamiltonian takes the form H = H2 +H3, where

H2 =
1

2

∫

[

h0

(

∂ϕ

∂x
− f

∂

∂y
∆−1 η

h0

)2

+ h0

(

∂ϕ

∂y
+

∂

∂x
∆−1 η

h0

)2

+ g

(

∂−1
ρ

η

ρ0

)2
]

dxdydρ, (29)

H3 =
1

2

∫

[

η

(

∂ϕ

∂x
− f

∂

∂y
∆−1 η

h0

)2

+ η

(

∂ϕ

∂y
+

∂

∂x
∆−1 η

h0

)2
]

dxdydρ,(30)



4.2 Small-amplitude waves on the bakground ofonstant strati�ation and their interationConsider the onstant rest state h0 = g/N2 = onst. The normalvariables bk are introdues in the standard way:
ϕk = i

√

ωk

2h0p2

(

bk − b∗−k

)

, ηk =

√

h0p2

2ωk

(

bk + b∗−k

)

. (31)



On the bakground of N = const, the linearization of (11) - (13)gives harmoni waves IGW with the frequeny:

ωk =

√

f2 +
gh0p2

ρ2
0q

2
, (32)where the wave vetor k is split into horizontal and vertial parts as:

k = (kx, ky, kz) = (p, q), k =
√

k2
x + k2

y + k2
z , p =

√

k2
x + k2

y.(33)The quadrati Hamiltonian takes the standard form
H2 =

∫

ωk|bk|2dk. (34)



In terms of the normal variables bk the Fourier transforms of veloityand η are:

uk = Akbk +A∗
−k
b∗−k

, vk = Bkbk +B∗
−k
b∗−k

, ηk = Ckbk +C∗
−k
b∗−k

,(35)

Ak =
−kxωk + ikyf

p
√

2h0ωk

, Bk =
−kyωk − ikxf

p
√

2h0ωk

, Ck =
kxh0

p
√

2h0ωk

.(36)



The interation Hamiltonian (30)
H3 =

1

2

∫

η(u2 + v2)dxdydρ, (37)thus, takes the standard form:
H3 =

∫

dk1dk2dk3δ(k1 + k2 − k3)V123b1b2b
∗
3 + .. + (38)

∫

dk1dk2dk3δ(k1 + k2 + k3)U123b1b2b3 + ... (39)The matrix elements have the following symmetries with respet topermutations: V123 = V213 and U123 = U213 = U321 = U132.



In terms of the oe�ients Ak, Bk, and Ck the matrix elements are:

V123 =
1

2
(C1(A2A

∗
3 +B2B

∗
3) + C2(A1A

∗
3 +B1B

∗
3) + C∗

3 (A1A2 +B1B2)) ,(40)

U123 =
1

6
(C1(A2A3 +B2B3) + C2(A1A3 +B1B3) + C3(A1A2 +B1B2)) .(41)



With the help of unit vetors ei = pi/pi we get :

2V123

√

8h0ω1ω2ω3 = p1((ω2ω3 + f2)(e2, e3) + if(ω2 + ω3)[e2, e3])

+ p2((ω1ω3 + f2)(e1, e3) + if(ω1 + ω3)[e1, e3])

+ p3((ω1ω2 − f2)(e1, e2) − if(ω1 − ω2)[e1, e2]),

6U123

√

8h0ω1ω2ω3 = p1((ω2ω3 − f2)(e2, e3) − if(ω2 − ω3)[e2, e3])

+ p2((ω1ω3 − f2)(e1, e3) − if(ω1 − ω3)[e1, e3])

+ p3((ω1ω2 − f2)(e1, e2) − if(ω1 − ω2)[e1, e2]).



4.3 The ase of near-inertial wavesConsider waves with ωk ≈ f . They are neessarily long in thehorizontal diretion, p≪ q, propagating almost vertially, and theirdispersion in the �rst order is:
ωk ≈ f

(

1 +
gh0

2f2ρ2
0

p2

q2

)

. (42)This dispersion law is of the non-deay type � an example ofanisotropi waves with a non-deay sale-invariant dispersion.Hene, three-wave interations are non-resonant, and an be removedby a anonial transformation (Zakharov, Lvov & Falkovih, 1992).In the leading order the three-wave matrix elements have the form
V123 =

√

f

8h0
(p1((e2, e3) + i[e2, e3]) + p2((e1, e3) + i[e1, e3])) , U123 = 0.(43)



The e�etive four-wave matrix element resulting after elimination ofthe non-resonant three-wave interations is:

Tkk1k2k3
= 2

Vk+k1,k,k1
V ∗
k2+k3,k2,k3

f
− 2

Vk,k2,k−k2
V ∗
k3,k1,k3−k1

f

−2
Vk,k3,k−k3

V ∗
k2,k1,k2−k1

f
− 2

Vk1,k3,k1−k3
V ∗
k2,k,k2−k

f

−2
Vk1,k2,k1−k2

V ∗
k3,k,k3−k

f
. (44)



5 Wave-turbulene of waves withsale-invariant anisotropi dispersion

5.1 General formalismThe dispersion relation (42) onsists of a onstant plus somepower-law anisotropi sale-invariant orretion. Due to itsnon-deay harater, only the orretion enters in the ollisionintegral for the ensemble of random-phase NIW .The way of dealing with the turbulene of waves with sale-invariantdispersion laws of the deay type was found in the pioneering work ofKuznetsov, 1972. It was applied to the oposite limite of horizontallyshort IGW by Daubner & Zeitlin 1996, and Caillol & Zeitlin 2000.We are not aware of similar results for the non-deay ase.



We assume a dispersion relation whih is of non-deay type,power-law, sale-invariant and isotropi separately in the horizontaland vertial diretions:
ω(k) = paqb, (45)The four-wave matrix element is also assumed to be sale-invariant:

T (λp, λp1, λp2, λp3, µq, µq1, µq2, µq3) = λcµdT (p,p1,p2,p3,q,q1,q2,q3).(46)



The standard form of the ollision integral of the four-wave kinetiequation is (Zakharov, L'vov & Falkovih, 1992):

I(4) [N(k)] =

∫

dk1dk2dk3Wkk1k2k3
fkk1k2k3

, (47)where

Wkk1k2k3
= π|Tkk1k2k3

|2δ(k+k1−k2−k3)δ(ω(k)+ω(k1)−ω(k2)−ω(k3)),(48)

fkk1k2k3
= N(k1)N(k2)N(k3) +N(k)N(k2)N(k3) −N(k)N(k1)N(k2)

− N(k)N(k1)N(k3). (49)



In order to fatorize the ollision integral I(4), whih is su�ient for�nding distributions N(k) annihilating it and, thus, giving stationarysolutions of the kineti equation, we use the trik �rst proposed byKats & Kontorovih, 1973.The resonant wave quadrangle (k,k1,k2,k3) de�ning the integrationmeasure in the ollision integral (47) may be transformed, with thehelp of the symmetry transformations Ĝi : Ĝiki = k i = 1, 2, 3onsisting of rotations and dilatations, into another resonantquadrangle (k,q1,q2,q3) in three di�erent ways:
q1 = Ĝ1

2
k1, q2 = Ĝ1k2, q3 = Ĝ1k3; (50)

q1 = Ĝ2k3, q2 = Ĝ2
2
k2, q3 = Ĝ2k1; (51)

q1 = Ĝ3k2, q2 = Ĝ3k1, q3 = Ĝ3
2
k3. (52)



For example, Ĝ3 ats on the horizontal and vertial wavenumbers,respetively, as follows:
Ĝ3H

= λ3 ◦ g3, λ3 =
p

p2
, Ĝ3z

= µ3 =
q

q2
. (53)Here g3 and λ3 are rotation and dilatation, respetively, in thehorizontal plane, and µ3 is dilatation in the vertial diretion. Theother transformations Ĝ1,2 are onstruted in the analogous way.



As follows from (45), (46)
Wkm1m2m3

= WĜ3k2Ĝ3k3Ĝ3kĜ3k1
= λ2c−2−a

3 µ2d−1−b
3 Wkk1k2k3

. (54)For the Jaobian of suh hange of variables we get:
|Ĝ3| = λ2

3µ3. (55)



The ollision integral may be represented as a sum of four replias ofitself in the form:
I(4) [N(k)] =

1

4

∫

dk1dk2dk3Wkk1k2k3

(

fk + λα
1 fĜ1k

+ λα
2 fĜ2k

+ λα
3 fĜ3k

)

,(56)where the sale fators are λi = |k|
|ki|

, i = 1, 2, 3.



If solutions are sought in the power-law form

N(k) = N(p, q) ∼ p−xq−y, then
fkm1m2m3

= N(k)N(k1)N(k2)N(k3)
(

N−1(k) +N−1(k1) −N−1(k) −N−1(k)

= (pp1p2p3)
−x(qq1q2q3)

−y (pxqy + px
1q

y
1 − px

2q
y
2 − px

3q
y
3 ) (57)and after e.g. the Ĝ3 transformation

fkm1m2m3
= fĜ3k3Ĝ3k3Ĝ3kĜ3k1

= λ−3x
3 µ−3y

3 fkk1k2k3
. (58)



By using (53), (54), (55), (57) we an represent the ollision integral(56) in the fatorized form
I(4) =

1

4prqs

∫

dk1dk2dk3Wkk1k2k3
fkk1k2k3

(prqs + pr
1q

s
1 − pr

2q
s
2 − pr

3q
s
3) ,(59)where, f. (45), (46),

r = 8 + 2c− 2 − a− 3x, s = 4 + 2d− 1 − b− 3y. (60)



The power-law solutions annihilating the ollision integral followfrom the symmetry of the last fator in I(4) and the orrespondingdelta-funtion.As usual, exploiting the frequeny delta-funtion in the ollisionintegral results in the spetrum related to the onstant energy �ux.Thus, if r = a, s = b, then I(4) vanishes sine the last fator oinideswith the argument of the delta-funtion. We thus get the �rstKolmogorov-like distribution
N(p, q) ∼ Pp−x1q−y1 , (x1, y1) = (6 + 2c− 2a, 3 + 2d− 2b)/3 (61)whih orresponds to the onstant energy �ux P through thespetrum.



If r = 0, s = 0, then the last fator in the ollision integral vanishes.Suh solution exploits the symmetry properties of the ollision term,whih orresponds, as usual, to the onservation of the wave ation.We thus get the seond Kolmogorov-like spetrum
N(p, q) ∼ Qp−x2q−y2 , (x2, y2) = (6 + 2c− a, 3 + 2d− b)/3 (62)whih orresponds to the onstant �ux of the wave ation Q.



Again, as usual, we have the generalized Rayleigh-Jeans solutions ofthe form

N ∼ 1

ωk − k · a− µ
, (63)where a is a onstant vetor and µ is an arbitrary onstant.



5.2 Weak turbulene and power-law spetra ofNIWAs follows from (48), (44) and (43) the matrix element and theargument of the delta funtion (whih we shorthand as ∆ω) in theollision integral (47) have the following saling exponents:

W (λp, µq) = λ4µ0W (p, q), ∆ω(λp, µq) = λ2µ−2∆ω(p, q). (64)Therefore we an apply the results of the previous subsetion to thispartiular ase and �nd the following power-law solutions of thekineti equation :



1. orresponding to the onstant energy �ux:

N(p, q) ∼ Pp−6/3q−7/3,2. orresponding to the onstant wave-ation �ux:

N(p, q) ∼ Qp−8/3q−5/3,3. orresponding to the zero �ux
N(p, q) ∼ Cp−2q2.The energy spetra, in the �rst approximation, oinide with the N -spetra up to the onstant f .



6 ConlusionsWe obtained stationary power-law energy spetra for NIW. Thesewaves are neessarily long in the horizontal diretion and short in thevertial diretion. NIW are ubiquitous in the atmosphere and oeansand, from the pratial point of view, our preditions, whenonfronted with observations, should allow to simultaneously testboth the validity of the random-phase approximation whih is at thebasis of the wave turbulene theory, and the physis behind the data.From the theoretial point of view, we see that, like in Medvedev &Zeitlin, 2005, where anisotropi sale-invariant orretions to theaousti-type dispersion of the short equatorial waves wereonsidered, the inertia-gravity waves in the atmosphere and oeanprovide a new example of appliations of anisotropi saling laws inthe wave turbulene.


