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1 Motivation

Quasi-inertial oscillations are ubiquitous in the atmosphere and the
oceans. The measured frequency spectra of atmospheric and oceanic
perturbations always exhibit a pronounced peak at the (local) inertial
frequency, f. The physical reason of the persistence of these
oscillations is simple: the minimal frequency of inertia-gravity waves
in the atmosphere, or ocean, is f, and the dispersion surface has a
minimum at this value. Hence, the group velocity of near-inertial
waves (NIW) is close to zero and they need long times to be

evacuated.

Motivated by the persistence of NIW, we consider below their
kinetics, assuming a large ensemble of weakly-nonlinear NIW with
random phases. We apply the wave-turbulence (WT) technique to
obtain the stationary energy spectra from the kinetic equation (KE)




for the wave-density.




2 WT approach to IGW: a brief review

WT approach to internal inertia-gravity waves (IGW) has a long
history which is intertwinned with strong turbulence approach to
rotating stratified flows (Herring and collaborators, Lesieur and
collaborators, Carnevale and collaborators, etc etc)

Muller, Olbers & collaborators (Hasselmann’s school, e.g. Muller and
Olbers, 1975, Olbers, 1976), and McComas (McComas & Muller,

1981) established kinetic equation by using Hamiltonian structure in
Lagrangian variables (correct incorporation of the pressure constraint

was problematic), and studied its asymptotics/approximate /numeric
solutions. Critisized by Holloway (1980,1984).

Pelinovsky & Raevsky (1977) obtained the anisotropic IGW
power-law spectra from dimensional reasons using Clebsch variables.
Voronovich (1979) also used Clebsch variables to obtain the KE.




Clebsch variables are also subject to constraints.

Daubner & Zeitlin (1996), and Caillol & Zeitlin (2000) used direct
averaging of the eqns of motion to derive KE and used Kuznetsov
method to obtain the anisotropic power-law spectra for IGW. They
also showed decoupling of wave and vortex components of motion in
low orders, and thus possibility to apply WT (lot of work on the
decoupling: Riley and coll., Majda and coll., Mahalov and coll.)

Y. Lvov & Tabak, 2001, 2004 rederived KE and spectra by Kuznetsov
method in isopycnal coordinates by using the Hamiltonian form by
Holm & Long (1984) and wave-projection by Falkovich & Medvedev
(1992). They were apparently unaware of previous literature.

For technical reasons most of the earlier results were obtained in the
(horizontally) short wave limit, when rotation effects may be

neglected (opposite to NIW limit).




3 PE in density/enthropy coordinates,

and their Hamiltonian structure

3.1 Primitive equations

Continuously stratified non-dissipative hydrostatic primitive PE

(oceanic case) :
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Here pg is a large constant background fluid density, and p is its

small variation: py > (p — po) (the Boussinesq approximation), p is

the hydrostatic pressure, v| and w are horizontal and vertical

components of the fluid velocity.




3.2 PE in isopycnal/isentropic coordinates

p — independent vertical coordinate, z — new dependent variable. —

Y, =gz, Y =Dp-+gpz,

where 1) is the Montgomery stream-function. Fluid velocity:
d
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= w = 0, a well-known advantage of the isopycnal (isentropic)
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coordinates. The "old" vertical velocity:
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Horizontal motion, % =0¢+ (v, V1):
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Mass conservation:
podxrdydz = poz,dxdydp,
which implies:

(Pozp)t + (upozp)a + (vpozp)y = 0.

Theretfore
Ut + uty + vuy — fo+ (¥/po)z =0,

vt + uv, + vvy, + fu+ (¥/po)y =0,

(Pozp)t + (upozp)a + (Vpozp)y =0 Y, = 2.




By introducing the potential vorticity (PV):

_ f'+'vx _'uy
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it is easy to see that an arbitrary function function of density and PV

G(q, p) is a Lagrangian invariant:

(?t—+ﬁu(?x-+-v(?y :Z(L (15)

The local energy conservation is expressed as:
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The Hamiltonian is the energy of the system in the isopycnal

coordinates:

1
H= / (h(u? 4 v?) + gz*) dadydp,

where the pseudo-height A is:

h = pozp,
and the Poisson bracket is (Holm & Long, 1989):

U O0H/ou = hu

v +J | dH/6v=hv | =0.

h SH/Sh = B

t




The Poisson bracket operator J:

(20)

and the variables resulting from functional differentiations of the
Hamiltonian are the pseudo-height, the PV, and the Bernoulli
function:
=tV ¥ (21)
2 PO
Remarkably, the Poisson bracket (20) is identical to that of the RSW
model (Falkovich & Medvedev, 1992) and the Hamiltonian (17) has a

similar form.




3.3 Wave-vortex decoupling

Following Falkovich & Medvedev, 1992, we define new dependent
variables: W = (h, ¢, q), where ¢ is the velocity potential, instead of

U = (u,v, h). Poisson bracket becomes:
0 —1 0
J=11 8,40, 4, [V'qV —q| 5
0 % [q o qu/] %aa:qay% o %ayqaa:%




Here 0, = 0,V 2, 0, =0,V ~*, V' = (0,,0,)", V= (VL,0.) and
the superscript 7' means matrix transposition. To get (22) from (20)
the following rules are applied. First, the change of variables from
the old U to new W functional variables is made. Then the
expressions of W in terms of U are diffrentiated by ¢ and the
transition matrix M is obtained: W; = M U,;. The new Poisson

bracket operator T = M J g MT follows. J,.., is then expressed

in terms of the new variables.




From (22) it follows that if the PV is a function of density alone

q = qo(p), the Poisson bracket has constant coefficients:

Hence, on the constrained manifold ¢ = qo(p) we get canonical

Hamiltonian variables h and ¢:
on_¢H 0y _ o
ot o’ ot  6h’
The velocity field is determined from

_Jdp 0

u=a- T ~(hgo — f),




4 Internal inertia-gravity waves

4.1 The state of rest and small perturbations

The rest state of the system is

AN
— %5 ~ N2 go = f/ho, (26)

where p = p(z) is the density at rest expressed as a function of z,

N (p) is the (variable) Brunt-Vaisala frequency




Consider a small perturbation of the rest state n = h — hg. Then

dp 1 1 dp 0, 11n
A — A 2
v Oz f oy ho’ v oy i Ox hg (27)

and the kinetic energy has a power expansion starting at the

second-order term. The expansion of the potential energy around the

state of rest contains the first-order terms:
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Due to the fact that the system conserves the generalized mass

M = / p)hdzxdydp,

where L(p) is an arbitrary functional depending on p, the linear
terms may be removed by introducing the available potential energy.
The wave Hamiltonian takes the form H = Hy + Hs, where
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4.2 Small-amplitude waves on the background of

constant stratification and their interaction

Consider the constant rest state hg = g/N? = const. The normal

variables by are introduces in the standard way:

W " hop? .
Pk =1 2h01;2 (b — b)), T = 2(;1{ (b + ") - (31)




On the background of N = const, the linearization of (11) - (13)

gives harmonic waves IGW with the frequency:

ghop?
Wk = f2 + ’ 32
\/ Paq? (32)

where the wave vector k is split into horizontal and vertical parts as:

k = (ko kyo ko) = (P,q), Kk = \/k2 +R2+ k2, p=./k2+E2.

The quadratic Hamiltonian takes the standard form

Hy, = /wk\bk|2dk.




In terms of the normal variables by the Fourier transforms of velocity

and 7 are:

Uk = Akbk‘FA*_kbik, Vk = Bkbk—FBikbik, Nk = Ckbk—FCikbik,
(35)
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The interaction Hamiltonian (30)

1

Hs = 5 /n(u2 + v?)dzdydp, (37)

thus, takes the standard form:

Hs = /dkldkgdkgé(kl + ko — k3)V12361be§ + c.c. + (38)

/dkldkgdk35(k1 + ko + kg)Ulggblebg + c.cC.. (39)

The matrix elements have the following symmetries with respect to

permutations: V123 = V213 and U123 = U213 = U321 = U132.




In terms of the coefficients Ay, Bk, and Cy the matrix elements are:

1
Vias = 5 (C1(A2A5 + ByB3) + Cy(A1A5 + B1B3) + C5(A1As + B1Bs))

(40)
1
Ui = 5 (C1(A2A3 + BoB3) + C3(A1As + B1B3) + C3(A1As + B1Bs))
(41)




With the help of unit vectors e; = p;/p; we get :

2V123 \/8}10(,01(,02(,03 = pl((WQCU3 + f2)(62, 63) + ’if((ﬂz + wg)[eg, 63])
+  pa((wiws + f?) (e, e3) +if (w1 + ws)ler, es])
+  p3((wiwe — f?)(e1,e2) — if (w1 —wa)ler, e2]),

6U123\/ 8howiwows =  p1((waws — f2)(ea, e3) — if(wy — ws)[ez, e3])
+  po((wiws — f2)(e1,e3) —if (w1 — ws)ler, es)])
+  p3((wiws — f?)(e1,e2) — if (w1 — wa)ler, ea]).




4.3 The case of near-inertial waves

Consider waves with wy =~ f. They are necessarily long in the
horizontal direction, p < ¢, propagating almost vertically, and their

dispersion in the first order is:

wik ~ f (1 + gho pZ) : (42)

2f%p5 ¢
This dispersion law is of the non-decay type — an example of
anisotropic waves with a non-decay scale-invariant dispersion.

Hence, three-wave interactions are non-resonant, and can be removed
by a canonical transformation (Zakharov, Lvov & Falkovich, 1992).
In the leading order the three-wave matrix elements have the form

]) +p2((617 63) + i[ela 63])) , U123 = 0.
(43)




The effective four-wave matrix element resulting after elimination of

the non-resonant three-wave interactions is:

* *
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f f

* >k
Vkak?) ak_kS ng ,kl ,kg —k1 2 Vkl 7k3 7k1 _k3 ng ,k,kg -k

f f

*
Vi, ko,k1 —ko ng k., ks—k

f




5 Wave-turbulence of waves with

scale-invariant anisotropic dispersion

5.1 General formalism

The dispersion relation (42) consists of a constant plus some
power-law anisotropic scale-invariant correction. Due to its
non-decay character, only the correction enters in the collision

integral for the ensemble of random-phase NIW .

The way of dealing with the turbulence of waves with scale-invariant
dispersion laws of the decay type was found in the pioneering work of
Kuznetsov, 1972. It was applied to the oposite limite of horizontally
short IGW by Daubner & Zeitlin 1996, and Caillol & Zeitlin 2000.

We are not aware of similar results for the non-decay case.




We assume a dispersion relation which is of non-decay type,
power-law, scale-invariant and isotropic separately in the horizontal

and vertical directions:

w(k) = p*q’, (45)

The four-wave matrix element is also assumed to be scale-invariant:

T()‘pa )‘pla )‘p27 )‘p37 nq, (qi, (g2, :uq3) — )‘C,udT(pa P1,P2,P3,9,q1, 92,
(46)




The standard form of the collision integral of the four-wave kinetic
equation is (Zakharov, L’vov & Falkovich, 1992):

](4) [N(k)] — /dkldk?dk3Wkk1k2k3 fkk1k2k37 (47)

where

Wkk1k2k3 — 7-‘-|CZ—11<1<11<21<3 ‘25(k+k1_k2_k3)5(w(k)+w(k1)_w(kQ)_w(k3))7
(48)

frkioks = N(k1)N(k2)N(ks) + N(k)N(ka)N(ks) — N (k)N (k) NV(
— N(k)N(ki)N(ks).




In order to factorize the collision integral I*), which is sufficient for
finding distributions N (k) annihilating it and, thus, giving stationary
solutions of the kinetic equation, we use the trick first proposed by
Kats & Kontorovich, 1973.

The resonant wave quadrangle (k,ki,ks,ks) defining the integration
measure in the collision integral (47) may be transformed, with the
help of the symmetry transformations G,: Gki=ki=1,23
consisting of rotations and dilatations, into another resonant

quadrangle (k, qi,qs,q3) in three different ways:

~ 2 ~ ~

q1 G1 ki, g2 = G1ks, q3 = G1ks;
R N R

q1 Goks, g2 = G ks, q3 = Gakg;
. . . 9

q1 Gsko, q2 = Gski, q3 = G3 ks.




For example, G5 acts on the horizontal and vertical wavenumbers,
respectively, as follows:

A p
Gs,, = A3 093, = Gs

Here g3 and A3 are rotation and dilatation, respectively, in the
horizontal plane, and p3 is dilatation in the vertical direction. The

other transformations G 2 are constructed in the analogous way.




As follows from (45), (46)

. A A A A __ \2c—2—a,,2d—1-0
ka1m2m3 — WG3k2G3k3G3kG3k1 — >‘3 M3 Wkk1k2k3° (54>

For the Jacobian of such change of variables we get:

Gs| = Aus. (55)




The collision integral may be represented as a sum of four replicas of

itself in the form:
1

IW[N(k)] = 1 /dkldkzdk3 Wik, koks (fk t A g T A2 g A g,
(56)

where the scale factors are \; = ||1i{-||7 1 =1,2,3.




If solutions are sought in the power-law form
N(k) = N(p,q) ~p~“q ¥, then

fumimoms = N(K)N(ki)N(ks)N(ks) (N"'(k)+ N '(ky) — N (k)
= (ppip2p3)” “(eq1q2q3) Y ("¢ +piq! —v545 — P3q3)

and after e.g. the G5 transformation

_3¢ -3
fkm1m2m3 — f(f3k3(f3k3(f3k(f3k1 — )‘3 x:ui% yfkk1k2k3' (58)




By using (53), (54), (55), (57) we can represent the collision integral
(56) in the factorized form

1 T .S T .S ™ .S T .S
T4 = /dkldedk3Wkk1k2k3fkk1k2k3 (p"q° + p1a; — Pog5 — P3q3)

4p"q*
(59)

where, cf. (45), (46),

r=842c—2—a—3x, s=4+2d—1—0b—3y. (60)




The power-law solutions annihilating the collision integral follow

from the symmetry of the last factor in I*) and the corresponding

delta-function.

As usual, exploiting the frequency delta-function in the collision
integral results in the spectrum related to the constant energy flux.
Thus, if » = a, s = b, then I®) vanishes since the last factor coincides
with the argument of the delta-function. We thus get the first

Kolmogorov-like distribution
N(p,q) ~ Pp~"'¢" ¥, (x1,y1) = (64 2c—2a,3+2d —2b)/3 (61)

which corresponds to the constant energy flux P through the

spectrum.




If r =0, s =0, then the last factor in the collision integral vanishes.
Such solution exploits the symmetry properties of the collision term,
which corresponds, as usual, to the conservation of the wave action.

We thus get the second Kolmogorov-like spectrum

N(p,q) ~Qp "¢ %, (w2,y2) = (6+2c—a,3+2d—-10)/3 (62)

which corresponds to the constant flux of the wave action Q.




Again, as usual, we have the generalized Rayleigh-Jeans solutions of

the form
1

N ~ 63
o kA (63)

where a is a constant vector and p is an arbitrary constant.




5.2 Weak turbulence and power-law spectra of
NIW

As follows from (48), (44) and (43) the matrix element and the
argument of the delta function (which we shorthand as Aw) in the

collision integral (47) have the following scaling exponents:

W (Ap, pg) = N p’W(p,q), Aw(Ap, pg) = Xp"?Aw(p,q).  (64)

Therefore we can apply the results of the previous subsection to this
particular case and find the following power-law solutions of the

kinetic equation :




1. corresponding to the constant energy flux:

N(p,q) ~ Pp~%/3¢77/3,

2. corresponding to the constant wave-action flux:

N(p,q) ~ Qp~8/3¢75/3,

3. corresponding to the zero flux
N(p,q) ~ Cp~*¢.

The energy spectra, in the first approximation, coincide with the NV -

spectra up to the constant f.




6 Conclusions

We obtained stationary power-law energy spectra for NIW. These
waves are necessarily long in the horizontal direction and short in the
vertical direction. NIW are ubiquitous in the atmosphere and oceans
and, from the practical point of view, our predictions, when
confronted with observations, should allow to simultaneously test
both the validity of the random-phase approximation which is at the
basis of the wave turbulence theory, and the physics behind the data.

From the theoretical point of view, we see that, like in Medvedev &
Zeitlin, 2005, where anisotropic scale-invariant corrections to the
acoustic-type dispersion of the short equatorial waves were
considered, the inertia-gravity waves in the atmosphere and ocean
provide a new example of applications of anisotropic scaling laws in

the wave turbulence.




