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1 MotivationQuasi-inertial os
illations are ubiquitous in the atmosphere and theo
eans. The measured frequen
y spe
tra of atmospheri
 and o
eani
perturbations always exhibit a pronoun
ed peak at the (lo
al) inertialfrequen
y, f . The physi
al reason of the persisten
e of theseos
illations is simple: the minimal frequen
y of inertia-gravity wavesin the atmosphere, or o
ean, is f , and the dispersion surfa
e has aminimum at this value. Hen
e, the group velo
ity of near-inertialwaves (NIW) is 
lose to zero and they need long times to beeva
uated.Motivated by the persisten
e of NIW, we 
onsider below theirkineti
s, assuming a large ensemble of weakly-nonlinear NIW withrandom phases. We apply the wave-turbulen
e (WT) te
hnique toobtain the stationary energy spe
tra from the kineti
 equation (KE)



for the wave-density.



2 WT approa
h to IGW: a brief reviewWT approa
h to internal inertia-gravity waves (IGW) has a longhistory whi
h is intertwinned with strong turbulen
e approa
h torotating strati�ed �ows (Herring and 
ollaborators, Lesieur and
ollaborators, Carnevale and 
ollaborators, et
 et
)Muller, Olbers & 
ollaborators (Hasselmann's s
hool, e.g. Muller andOlbers, 1975, Olbers, 1976), and M
Comas (M
Comas & Muller,1981) established kineti
 equation by using Hamiltonian stru
ture inLagrangian variables (
orre
t in
orporation of the pressure 
onstraintwas problemati
), and studied its asymptoti
s/approximate/numeri
solutions. Critisized by Holloway (1980,1984).Pelinovsky & Raevsky (1977) obtained the anisotropi
 IGWpower-law spe
tra from dimensional reasons using Clebs
h variables.Voronovi
h (1979) also used Clebs
h variables to obtain the KE.



Clebs
h variables are also subje
t to 
onstraints.Daubner & Zeitlin (1996), and Caillol & Zeitlin (2000) used dire
taveraging of the eqns of motion to derive KE and used Kuznetsovmethod to obtain the anisotropi
 power-law spe
tra for IGW. Theyalso showed de
oupling of wave and vortex 
omponents of motion inlow orders, and thus possibility to apply WT (lot of work on thede
oupling: Riley and 
oll., Majda and 
oll., Mahalov and 
oll.)Y. Lvov & Tabak, 2001, 2004 rederived KE and spe
tra by Kuznetsovmethod in isopy
nal 
oordinates by using the Hamiltonian form byHolm & Long (1984) and wave-proje
tion by Falkovi
h & Medvedev(1992). They were apparently unaware of previous literature.For te
hni
al reasons most of the earlier results were obtained in the(horizontally) short wave limit, when rotation e�e
ts may benegle
ted (opposite to NIW limit).



3 PE in density/enthropy 
oordinates,and their Hamiltonian stru
ture

3.1 Primitive equationsContinuously strati�ed non-dissipative hydrostati
 primitive PE(o
eani
 
ase) :

dv⊥
dt

+ fẑ × v⊥ +
1

ρ0
∇⊥p = 0, (1)

1

ρ
pz + g = 0, (2)

∇⊥v⊥ + wz = 0, (3)

dρ

dt
= 0,

d

dt
= ∂t + (v⊥,∇⊥) + w∂z (4)



Here ρ0 is a large 
onstant ba
kground �uid density, and ρ is itssmall variation: ρ0 ≫ (ρ− ρ0) (the Boussinesq approximation), p isthe hydrostati
 pressure, v⊥ and w are horizontal and verti
al
omponents of the �uid velo
ity.



3.2 PE in isopy
nal/isentropi
 
oordinates

ρ � independent verti
al 
oordinate, z � new dependent variable. →
ψρ = gz, ψ = p+ gρz, (5)where ψ is the Montgomery stream-fun
tion. Fluid velo
ity:

(u, v, w̃) =
d

dt
(x, y, ρ). (6)

⇒ w̃ = 0, a well-known advantage of the isopy
nal (isentropi
)
oordinates. The "old" verti
al velo
ity:
w =

dz

dt
= zt + uzx + vzy. (7)Horizontal motion, D

Dt = ∂t + (v⊥,∇⊥):
Dv⊥
Dt

+ fẑ × v⊥ +
1

ρ0
∇⊥ψ = 0. (8)



Mass 
onservation:
ρ0dxdydz = ρ0zρdxdydρ, (9)whi
h implies:

(ρ0zρ)t + (uρ0zρ)x + (vρ0zρ)y = 0. (10)Therefore

ut + uux + vuy − fv + (ψ/ρ0)x = 0, (11)

vt + uvx + vvy + fu+ (ψ/ρ0)y = 0, (12)

(ρ0zρ)t + (uρ0zρ)x + (vρ0zρ)y = 0 ψρ = z. (13)



By introdu
ing the potential vorti
ity (PV):

q =
f + vx − uy

zρ
, (14)it is easy to see that an arbitrary fun
tion fun
tion of density and PV

G(q, ρ) is a Lagrangian invariant:
Gt + uGx + vGy = 0, (15)The lo
al energy 
onservation is expressed as:

(

1

2

(

ρ0zρ(u
2 + v2) − gz2

)

)

t

+

(

ρ0zρu

(

u2 + v2

2
+ ψ

))

x

+

(

ρ0zρv

(

u2 + v2

2
+ ψ

))

y

+ (ψzt)ρ = 0.(16)



The Hamiltonian is the energy of the system in the isopy
nal
oordinates:
H =

1

2

∫

(

h(u2 + v2) + gz2
)

dxdydρ, (17)where the pseudo-height h is:
h = ρ0zρ, (18)and the Poisson bra
ket is (Holm & Long, 1989):









u

v

h









t

+ Ĵ









δH/δu = hu

δH/δv = hv

δH/δh = B









= 0. (19)



The Poisson bra
ket operator Ĵ :
Ĵ =









0 −q ∂x

q 0 ∂y

∂x ∂y 0









, (20)

and the variables resulting from fun
tional di�erentiations of theHamiltonian are the pseudo-height, the PV, and the Bernoullifun
tion:

B =
u2 + v2

2
+
ψ

ρ0
. (21)Remarkably, the Poisson bra
ket (20) is identi
al to that of the RSWmodel (Falkovi
h & Medvedev, 1992) and the Hamiltonian (17) has asimilar form.



3.3 Wave-vortex de
ouplingFollowing Falkovi
h & Medvedev, 1992, we de�ne new dependentvariables: W = (h, ϕ, q), where ϕ is the velo
ity potential, instead of

U = (u, v, h). Poisson bra
ket be
omes:
Ĵ =









0 −1 0

1 ∂′xq∂
′
y − ∂′yq∂

′
x [∇′q∇− q] 1

h

0 1
h [q −∇q∇′] 1

h∂xq∂y
1
h − 1

h∂yq∂x
1
h









. (22)



Here ∂′x = ∂x∇−2, ∂′y = ∂y∇−2, ∇′ = (∂′x, ∂
′
y)T , ∇ = (∇⊥, ∂z) andthe supers
ript T means matrix transposition. To get (22) from (20)the following rules are applied. First, the 
hange of variables fromthe old U to new W fun
tional variables is made. Then theexpressions of W in terms of U are di�rentiated by t and thetransition matrix M is obtained: Wt = MUt. The new Poissonbra
ket operator Ĵnew = M Ĵold M† follows. Ĵnew is then expressedin terms of the new variables.



From (22) it follows that if the PV is a fun
tion of density alone

q = q0(ρ), the Poisson bra
ket has 
onstant 
oe�
ients:

Ĵ =









0 −1 0

1 0 0

0 0 0









. (23)

Hen
e, on the 
onstrained manifold q = q0(ρ) we get 
anoni
alHamiltonian variables h and ϕ:
∂h

∂t
=
δH

δϕ
,

∂ϕ

∂t
= −δH

δh
. (24)The velo
ity �eld is determined from

u =
∂ϕ

∂x
− ∂

∂y
∆−1(hq0 − f), v =

∂ϕ

∂y
+

∂

∂x
∆−1(hq0 − f) . (25)



4 Internal inertia-gravity waves

4.1 The state of rest and small perturbationsThe rest state of the system is
u0 = 0, v0 = 0, h0(ρ) = −

(

1

ρ0

dρ̄

dz

)−1

=
g

N2
, q0 = f/h0, (26)where ρ̄ = ρ̄(z) is the density at rest expressed as a fun
tion of z,

N(ρ) is the (variable) Brunt-Vaisala frequen
y
N2 = − g

ρ0

dρ̄

dz
.



Consider a small perturbation of the rest state η = h− h0. Then

u =
∂ϕ

∂x
− f

∂

∂y
∆−1 η

h0
, v =

∂ϕ

∂y
+

∂

∂x
∆−1 η

h0

(27)and the kineti
 energy has a power expansion starting at these
ond-order term. The expansion of the potential energy around thestate of rest 
ontains the �rst-order terms:
z2 =

(

∂−1
ρ

h0 + η

ρ0

)2

=

(

∂−1
ρ

h0

ρ0

)2

+2

(

∂−1
ρ

h0

ρ0

)(

∂−1
ρ

η

ρ0

)

+

(

∂−1
ρ

η

ρ0

)2

.(28)



Due to the fa
t that the system 
onserves the generalized mass

M =

∫

L(ρ)hdxdydρ,where L(ρ) is an arbitrary fun
tional depending on ρ, the linearterms may be removed by introdu
ing the available potential energy.The wave Hamiltonian takes the form H = H2 +H3, where

H2 =
1

2

∫

[

h0

(

∂ϕ

∂x
− f

∂

∂y
∆−1 η

h0

)2

+ h0

(

∂ϕ

∂y
+

∂

∂x
∆−1 η

h0

)2

+ g

(

∂−1
ρ

η

ρ0

)2
]

dxdydρ, (29)

H3 =
1

2

∫

[

η

(

∂ϕ

∂x
− f

∂

∂y
∆−1 η

h0

)2

+ η

(

∂ϕ

∂y
+

∂

∂x
∆−1 η

h0

)2
]

dxdydρ,(30)



4.2 Small-amplitude waves on the ba
kground of
onstant strati�
ation and their intera
tionConsider the 
onstant rest state h0 = g/N2 = 
onst. The normalvariables bk are introdu
es in the standard way:
ϕk = i

√

ωk

2h0p2

(

bk − b∗−k

)

, ηk =

√

h0p2

2ωk

(

bk + b∗−k

)

. (31)



On the ba
kground of N = const, the linearization of (11) - (13)gives harmoni
 waves IGW with the frequen
y:

ωk =

√

f2 +
gh0p2

ρ2
0q

2
, (32)where the wave ve
tor k is split into horizontal and verti
al parts as:

k = (kx, ky, kz) = (p, q), k =
√

k2
x + k2

y + k2
z , p =

√

k2
x + k2

y.(33)The quadrati
 Hamiltonian takes the standard form
H2 =

∫

ωk|bk|2dk. (34)



In terms of the normal variables bk the Fourier transforms of velo
ityand η are:

uk = Akbk +A∗
−k
b∗−k

, vk = Bkbk +B∗
−k
b∗−k

, ηk = Ckbk +C∗
−k
b∗−k

,(35)

Ak =
−kxωk + ikyf

p
√

2h0ωk

, Bk =
−kyωk − ikxf

p
√

2h0ωk

, Ck =
kxh0

p
√

2h0ωk

.(36)



The intera
tion Hamiltonian (30)
H3 =

1

2

∫

η(u2 + v2)dxdydρ, (37)thus, takes the standard form:
H3 =

∫

dk1dk2dk3δ(k1 + k2 − k3)V123b1b2b
∗
3 + 
.
. + (38)

∫

dk1dk2dk3δ(k1 + k2 + k3)U123b1b2b3 + 
.
.. (39)The matrix elements have the following symmetries with respe
t topermutations: V123 = V213 and U123 = U213 = U321 = U132.



In terms of the 
oe�
ients Ak, Bk, and Ck the matrix elements are:

V123 =
1

2
(C1(A2A

∗
3 +B2B

∗
3) + C2(A1A

∗
3 +B1B

∗
3) + C∗

3 (A1A2 +B1B2)) ,(40)

U123 =
1

6
(C1(A2A3 +B2B3) + C2(A1A3 +B1B3) + C3(A1A2 +B1B2)) .(41)



With the help of unit ve
tors ei = pi/pi we get :

2V123

√

8h0ω1ω2ω3 = p1((ω2ω3 + f2)(e2, e3) + if(ω2 + ω3)[e2, e3])

+ p2((ω1ω3 + f2)(e1, e3) + if(ω1 + ω3)[e1, e3])

+ p3((ω1ω2 − f2)(e1, e2) − if(ω1 − ω2)[e1, e2]),

6U123

√

8h0ω1ω2ω3 = p1((ω2ω3 − f2)(e2, e3) − if(ω2 − ω3)[e2, e3])

+ p2((ω1ω3 − f2)(e1, e3) − if(ω1 − ω3)[e1, e3])

+ p3((ω1ω2 − f2)(e1, e2) − if(ω1 − ω2)[e1, e2]).



4.3 The 
ase of near-inertial wavesConsider waves with ωk ≈ f . They are ne
essarily long in thehorizontal dire
tion, p≪ q, propagating almost verti
ally, and theirdispersion in the �rst order is:
ωk ≈ f

(

1 +
gh0

2f2ρ2
0

p2

q2

)

. (42)This dispersion law is of the non-de
ay type � an example ofanisotropi
 waves with a non-de
ay s
ale-invariant dispersion.Hen
e, three-wave intera
tions are non-resonant, and 
an be removedby a 
anoni
al transformation (Zakharov, Lvov & Falkovi
h, 1992).In the leading order the three-wave matrix elements have the form
V123 =

√

f

8h0
(p1((e2, e3) + i[e2, e3]) + p2((e1, e3) + i[e1, e3])) , U123 = 0.(43)



The e�e
tive four-wave matrix element resulting after elimination ofthe non-resonant three-wave intera
tions is:

Tkk1k2k3
= 2

Vk+k1,k,k1
V ∗
k2+k3,k2,k3

f
− 2

Vk,k2,k−k2
V ∗
k3,k1,k3−k1

f

−2
Vk,k3,k−k3

V ∗
k2,k1,k2−k1

f
− 2

Vk1,k3,k1−k3
V ∗
k2,k,k2−k

f

−2
Vk1,k2,k1−k2

V ∗
k3,k,k3−k

f
. (44)



5 Wave-turbulen
e of waves withs
ale-invariant anisotropi
 dispersion

5.1 General formalismThe dispersion relation (42) 
onsists of a 
onstant plus somepower-law anisotropi
 s
ale-invariant 
orre
tion. Due to itsnon-de
ay 
hara
ter, only the 
orre
tion enters in the 
ollisionintegral for the ensemble of random-phase NIW .The way of dealing with the turbulen
e of waves with s
ale-invariantdispersion laws of the de
ay type was found in the pioneering work ofKuznetsov, 1972. It was applied to the oposite limite of horizontallyshort IGW by Daubner & Zeitlin 1996, and Caillol & Zeitlin 2000.We are not aware of similar results for the non-de
ay 
ase.



We assume a dispersion relation whi
h is of non-de
ay type,power-law, s
ale-invariant and isotropi
 separately in the horizontaland verti
al dire
tions:
ω(k) = paqb, (45)The four-wave matrix element is also assumed to be s
ale-invariant:

T (λp, λp1, λp2, λp3, µq, µq1, µq2, µq3) = λcµdT (p,p1,p2,p3,q,q1,q2,q3).(46)



The standard form of the 
ollision integral of the four-wave kineti
equation is (Zakharov, L'vov & Falkovi
h, 1992):

I(4) [N(k)] =

∫

dk1dk2dk3Wkk1k2k3
fkk1k2k3

, (47)where

Wkk1k2k3
= π|Tkk1k2k3

|2δ(k+k1−k2−k3)δ(ω(k)+ω(k1)−ω(k2)−ω(k3)),(48)

fkk1k2k3
= N(k1)N(k2)N(k3) +N(k)N(k2)N(k3) −N(k)N(k1)N(k2)

− N(k)N(k1)N(k3). (49)



In order to fa
torize the 
ollision integral I(4), whi
h is su�
ient for�nding distributions N(k) annihilating it and, thus, giving stationarysolutions of the kineti
 equation, we use the tri
k �rst proposed byKats & Kontorovi
h, 1973.The resonant wave quadrangle (k,k1,k2,k3) de�ning the integrationmeasure in the 
ollision integral (47) may be transformed, with thehelp of the symmetry transformations Ĝi : Ĝiki = k i = 1, 2, 3
onsisting of rotations and dilatations, into another resonantquadrangle (k,q1,q2,q3) in three di�erent ways:
q1 = Ĝ1

2
k1, q2 = Ĝ1k2, q3 = Ĝ1k3; (50)

q1 = Ĝ2k3, q2 = Ĝ2
2
k2, q3 = Ĝ2k1; (51)

q1 = Ĝ3k2, q2 = Ĝ3k1, q3 = Ĝ3
2
k3. (52)



For example, Ĝ3 a
ts on the horizontal and verti
al wavenumbers,respe
tively, as follows:
Ĝ3H

= λ3 ◦ g3, λ3 =
p

p2
, Ĝ3z

= µ3 =
q

q2
. (53)Here g3 and λ3 are rotation and dilatation, respe
tively, in thehorizontal plane, and µ3 is dilatation in the verti
al dire
tion. Theother transformations Ĝ1,2 are 
onstru
ted in the analogous way.



As follows from (45), (46)
Wkm1m2m3

= WĜ3k2Ĝ3k3Ĝ3kĜ3k1
= λ2c−2−a

3 µ2d−1−b
3 Wkk1k2k3

. (54)For the Ja
obian of su
h 
hange of variables we get:
|Ĝ3| = λ2

3µ3. (55)



The 
ollision integral may be represented as a sum of four repli
as ofitself in the form:
I(4) [N(k)] =

1

4

∫

dk1dk2dk3Wkk1k2k3

(

fk + λα
1 fĜ1k

+ λα
2 fĜ2k

+ λα
3 fĜ3k

)

,(56)where the s
ale fa
tors are λi = |k|
|ki|

, i = 1, 2, 3.



If solutions are sought in the power-law form

N(k) = N(p, q) ∼ p−xq−y, then
fkm1m2m3

= N(k)N(k1)N(k2)N(k3)
(

N−1(k) +N−1(k1) −N−1(k) −N−1(k)

= (pp1p2p3)
−x(qq1q2q3)

−y (pxqy + px
1q

y
1 − px

2q
y
2 − px

3q
y
3 ) (57)and after e.g. the Ĝ3 transformation

fkm1m2m3
= fĜ3k3Ĝ3k3Ĝ3kĜ3k1

= λ−3x
3 µ−3y

3 fkk1k2k3
. (58)



By using (53), (54), (55), (57) we 
an represent the 
ollision integral(56) in the fa
torized form
I(4) =

1

4prqs

∫

dk1dk2dk3Wkk1k2k3
fkk1k2k3

(prqs + pr
1q

s
1 − pr

2q
s
2 − pr

3q
s
3) ,(59)where, 
f. (45), (46),

r = 8 + 2c− 2 − a− 3x, s = 4 + 2d− 1 − b− 3y. (60)



The power-law solutions annihilating the 
ollision integral followfrom the symmetry of the last fa
tor in I(4) and the 
orrespondingdelta-fun
tion.As usual, exploiting the frequen
y delta-fun
tion in the 
ollisionintegral results in the spe
trum related to the 
onstant energy �ux.Thus, if r = a, s = b, then I(4) vanishes sin
e the last fa
tor 
oin
ideswith the argument of the delta-fun
tion. We thus get the �rstKolmogorov-like distribution
N(p, q) ∼ Pp−x1q−y1 , (x1, y1) = (6 + 2c− 2a, 3 + 2d− 2b)/3 (61)whi
h 
orresponds to the 
onstant energy �ux P through thespe
trum.



If r = 0, s = 0, then the last fa
tor in the 
ollision integral vanishes.Su
h solution exploits the symmetry properties of the 
ollision term,whi
h 
orresponds, as usual, to the 
onservation of the wave a
tion.We thus get the se
ond Kolmogorov-like spe
trum
N(p, q) ∼ Qp−x2q−y2 , (x2, y2) = (6 + 2c− a, 3 + 2d− b)/3 (62)whi
h 
orresponds to the 
onstant �ux of the wave a
tion Q.



Again, as usual, we have the generalized Rayleigh-Jeans solutions ofthe form

N ∼ 1

ωk − k · a− µ
, (63)where a is a 
onstant ve
tor and µ is an arbitrary 
onstant.



5.2 Weak turbulen
e and power-law spe
tra ofNIWAs follows from (48), (44) and (43) the matrix element and theargument of the delta fun
tion (whi
h we shorthand as ∆ω) in the
ollision integral (47) have the following s
aling exponents:

W (λp, µq) = λ4µ0W (p, q), ∆ω(λp, µq) = λ2µ−2∆ω(p, q). (64)Therefore we 
an apply the results of the previous subse
tion to thisparti
ular 
ase and �nd the following power-law solutions of thekineti
 equation :



1. 
orresponding to the 
onstant energy �ux:

N(p, q) ∼ Pp−6/3q−7/3,2. 
orresponding to the 
onstant wave-a
tion �ux:

N(p, q) ∼ Qp−8/3q−5/3,3. 
orresponding to the zero �ux
N(p, q) ∼ Cp−2q2.The energy spe
tra, in the �rst approximation, 
oin
ide with the N -spe
tra up to the 
onstant f .



6 Con
lusionsWe obtained stationary power-law energy spe
tra for NIW. Thesewaves are ne
essarily long in the horizontal dire
tion and short in theverti
al dire
tion. NIW are ubiquitous in the atmosphere and o
eansand, from the pra
ti
al point of view, our predi
tions, when
onfronted with observations, should allow to simultaneously testboth the validity of the random-phase approximation whi
h is at thebasis of the wave turbulen
e theory, and the physi
s behind the data.From the theoreti
al point of view, we see that, like in Medvedev &Zeitlin, 2005, where anisotropi
 s
ale-invariant 
orre
tions to thea
ousti
-type dispersion of the short equatorial waves were
onsidered, the inertia-gravity waves in the atmosphere and o
eanprovide a new example of appli
ations of anisotropi
 s
aling laws inthe wave turbulen
e.


