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1 2-layer Equatorial Rotating Shallow

Water model and its linear spectrum

1.1 Equations of motion

Momentum and mass conservation equations in each layer:

1
ou; +u;,-Vu;, + fyz xu; + —Vm; =0,1 =1, 2;

pi

8ch—I—V(uzhz) :O,Z: 1,2,

w; = (ui(z,y,t), vi(z,y,t)) - velocities, p; - densities of the layers,

close to each other,

mo=m —p1ghi g =g(p2—p1)/p1,

B.c.: rigid lid and flat bottom.




Barotropic and the baroclinic velocities:

hiui + hous
H

Upt = y Upe — U1 — U2.

Rigid lid = V - up; = 0 — barotropic streamfunction .

Equations of motion:

Vi + 1, = € [—J(% V) = 5(Oza — Oyy) [(1 + €gh)(uv)]
+ 504y [(1 + eqh)(u? — 02)} )] (5)

w+Vh+yzxu = e|-J@W,u)+u-V(zxVy)—qu-Vu
+ €es(2hu-Vu+uu-Vh)|,

hi+V-u=e[-J(,h) —qV - (uh) +esV - (h*u)].




1.2 Parameters and scaling

H - 2H,
= = 8
1 H (®)

Hl(i[_Hl) . The

AH denotes a typical variation of the interface, H, =
following scaling is used to non-dimensionalize the model:
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1.3 Linear wave spectrum

Barotropic Rossby waves - propagate at any angle with respect to the

equator:

@Zo — A, ety o c.c.; 0 = kx — ot. 10
P

Dispersion relation

o= —k/(k*+1%). (11)
Trapped baroclinic waves
(u, v, ;L) = (iUpn, Vin, iHyn) Ae9™ 4 c.c.; 0, = kx — ot (12)
with the dispersion relation
o —(k* +2m+ 1o, —k=0; m=0,1,2,...,
m - meridional wavenumber of the trapped wave.

FEquator is a wave-guide transparent for some type of waves!




For m > 0, and k£ < 0 the lower branches of (13) correspond to the
equatorial Rossby waves. The upper branches describe equatorial
inertia-gravity waves. m = 0 corresponds to Yanai (mixed
Rossby-gravity) waves, m = —1 corresponds to dispersionless Kelvin
wave. The functions U,,, V,, = ¢, H,, are strongly localized near
the equator (y = 0). They are expressed in terms of the parabolic
cylinder functions:

2

Hm (y)e_y7

TmYPm — k¢, . kyom — 0m¢/

V2rml/r 02, —k? o2 — k?
(14)
where M., (y) are the Hermite polynomials and the prime means y-

differentiation.

Baroclinic/barotropic zonal flow - exact solution of (5 - 7):

a=1u(y), h="hy), ya+h,=0; ¥ =21(y). (15)




Relation de dispersion des ondes equatoriales

Gravity
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Figure 1: The dispersion curves for trapped equatorial waves. Modes

with m = —1,0, 1, 2 are displayed




2 The main ideas and a reminder of

previous results

2.1 The philosophy of the approach
Look for weakly nonlinear interactions of the (plane) barotropic wave
passing through the equator with:

1. a pair of trapped baroclinic waves

2. a trapped baroclinic wave and an equatorial zonal flow

These may produce a resonant growth of the baroclinic waves (a
parametric, or sub-harmonic resonance) in the equatorial waveguide
thus becoming "semi-transparent". If this is the case, study eventual

nonlinear saturation and then the effects of spatial modulation.




If works, expect multiple equilibria in the resulting Landau equation
(without spatial modulation) and nontrivial spatio-temporal
organization in the Ginzburg-Landau (GL) type equation (with
spatial modulation). A (single?) known in GFD example of trapped

waves excited by free waves: beach waves (Minzoni & Whitham,
1977).

Work on parametric excitation of topographic trapped waves in
progress (Reznik & Zeitlin, 2007).




2.2 Reminder of the results on three-wave
resonances (Reznik & Zeitlin, 2006)

1. A pair of trapped baroclinic Rossby or Yanai waves and a

barotropic wave with
kl—l-]fgzk; O'1-|-O'2:O', (16)

where o1 o verify (13) for some m; o, and o verifies (11) for some
[ do resonate. Particular case of "pure" parametric resonance:
k1 = ko = k/2. Solutions of the synchronism conditions (16) are

dense in the phase-space k, (.

. The resonant growth of baroclinic wave(s) is always saturated
nonlinearly. In the k1 = ks case Landau equation has two
different stationary solutions. In the ki # ko the saturated

amplitudes slowly oscillate in time.




3. A GL-type modulation equation arises in the spatially modulated

k1 = ko case

Ap — %6”(1%)AXX + LAGA+ (P+iQ)|A?A=0,  (17)

giving "domain wall" and "dark soliton" patterns of
spatio-temporal organisation. A pair of coupled GL-type

equations arises in the spatially modulated kq # ko case.




One pair

Figure 2: Typical resonance domain in the phase-space of the

barotropic wave. Yanai - Rossby resonance




DNS of the GL-type equation: formation of "dark soliton"




3 Barotropic-baroclinic wave resonance in

the presence of a zonal flow

3.1 Synchronism conditions

The barotropic and baroclinic waves should have the same k, o.
Possible if
P =2m+1-o02, (18)

For baroclinic Rossby and Yanai waves o, < 1 and for a given

baroclinic mode m the corresponding barotropic mode exists.

e Yanal wave, m = O:

?=1—-0%=—koo, oo =k/24+\/1+k2/4. (19)




e Rossby wave, m > 1. In this case with high accuracy

k
k24 2m+1
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Figure 4: Solutions to synchronism conditions in the phase-space of

the barotropic wave.




3.2 Removal of resonances

Forced linear system arising at each order of expansion in

nonlinearity has the form:

V2% + . = Qy (22)

ut_yv—l'hx:Qua 'Ut"'yu—l_hy:Qva ht"'ux_l'vy:Qh- (23)

Solution is bounded provided the following orthogonality conditions

are satisfied:

<¢Qw>x,y,t = 0, (24)

dy (1Qy + 9Qy + hQp) s = 0, (25)




where @E, U, v, h is an arbitrary bounded solution of the homogeneous

equations (22), (23) and the angles denote the averaging:

(...)z = lim ! /mda: (26)

L,—o00 2Lx I,

In our problem, the source terms have the form:

Q= _ QL (y)e!Far=oab), (27)
q

with be,m,h(y) rapidly decaying at y — doo. For such Q. the
conditions (24), (25) are not only necessary, but also sufficient for
existence of bounded solutions to (22), (23) if k, # 0, o, # 0.




3.3 Results of straightforward perturbation

expansion

Multi-timescale expansion:
(% u, v, h) — (w(O)a U(O)a U(O)v h(O))(xa Y1, T7 )+€(¢(1)a u(l)a ,0(1)7 h(l))(xv /, 1, Ta )

(B, u® 50 KO = (GO, 7O 1 5 50 4 50 FO 4+ HO), Tilde

- waves, bar - zonal flow. Lowest order results:
e Barotropic wave remains unchanged: A, does not depend on T,
e Zonal flow @(%, h(®) does not change in time (Eliassen-Palm),

e Slow-time evolution of the amplitude of the baroclinic wave:

CL()AT —+ ZQLA = —kL¢A¢. (28)



Solution;
ik Ly,

A=
qL

_aLp
Ay + Coe 20, Cy = const.




The coefficients:

/ dy (U2 + 62, + H2),

— 00

/ dy eV [B;())Hm — (k¢ + 26U, + Umy)fa(o)] . (30)

— 00

/OO dy ([k(ng +¢p, + H) + (Umgbm)y} al?

— 00

(KH,, U, + ¢mHmy)7z<0>> |




If ¢ L =0 then linear growth:

—kLy,
ao

A= A¢T—|—CO

For resonant growth it is necessary that:
e cither ¢ = 0 - layers of equal depth,
e or L. = 0 - special zonal flow

Nevertheless growth always results for slightly detuned frequencies:

Opt = Ope + €0, with 0 = %. In what follows ¢ = 0 for technical

simplicity.




4 Nonlinear saturation of growth in the

case of barotropic-baroclinic-meanflow

resonarce.

4.1 General modulation equation

Method of studying saturation: rearrangement of asymptotic

expansions. Solution is sought in the form:
PO = Ay’ 4ce 4+ ep(y) + 0 (2, y,t, T e),
(u(O)7 v h(O)) _ eo‘(ﬂ(o), 0, B(O))(y, Tos) + €2 (iU, dm, iHpm ) Al
- (u(l), O h(l))(x, Y, t,To, Tpr,€) + c.c,

where T,/ g = e 0t o B >0, and it is supposed that the mean
flow is sufficiently intense: 1 < a <0, v < 0.




Parameters «, vy are fixed, and the value of 3 which determines the
saturated baroclinic amplitude (8 < 0 in such case) is to be found.

The correction to the barotropic wave is determined from:

V2O 90 = €5 | = (0ar = Oyy) (@O0 D) + 80y (w2 = 002)]

(33)
It is this correction which will give either linear or nonlinear
saturation of the trapped wave growth via, resp., interaction with
zonal flow and the trapped wave, or triad interaction with the

trapped wave .




Eliminating resonances while finding the baroclinic correction
(u), v, b)) leads to the modulation equation for A:

¢ agAr,, +e* T2 (p+iq) A+€ TViLy, A+ (P1iQ)|APA = —e' TPk L,
(34)
One recognizes in the r.h.s. the previously studied resonant forcing of

the baroclinic wave.

e p,q arise from wave-mean-mean interactions,

o L,, arises from wave -barotropic flow interaction,

e P, () arise from three-wave interaction.



4.2 Analysis of possible regimes and canonical

modulation equation

Analysis of the modulation equation in the absence of the barotropic
component of the zonal flow shows that at a < —% the linear
saturation dominates, while at o > —% it is the nonlinear one. In

both cases 3 > —%, and thus the limiting value of A do not exceed
1

€~ 2, which is achieved at a = 3 = —%. The slow time-scale is
determined by 3/ =1+ o — 5.

In the presence of the barotropic component of the zonal flow, if this
latter is weak with respect to the baroclinic flow, its role is reduced
to changing the linear saturation coefficients. If the barotropic flow is
strong it acts similar to non-zero ¢ in the previous analysis and, thus

a detuning is necessary to have growing and then saturating solutions.




1
9

otherwise). Modulation equation:

"Optimal" case o = 3 = no barotropic flow (detuning

_ ~ kL
Az, + (P +ig)A+ (P +iQ)|APA = — =2 Ay, P>0,5>0. (35)
0

The real parts of p, P are:

1 o0 .
D= —— dy F ily
7= |, RO

1 +oo |
_ / dy Fo(y)e|, if 2 =12 — 3k < 0,
16|l|o

0, if I? =1? — 3k* > 0.

— OO0




Here

Fy = (¢ptg)" —2k(Utiy)' + k2 ptig, Fi = (¢oU)" —2k(U? +¢?)' +4k2¢U,

(38)
and the index m is omitted in meridional wave structure functions
(14). We do not give the expression for ¢, () which have similar

structure but are rather cumbersome.

Most important:

p>0, P>0, (39)

and, hence, the corresponding terms produce saturation of A
Saturation due to p will be called "linear" and that due to P

"nonlinear".




4.3 Analysis of saturated solutions

By renormalizing A and T the number of relevant parameters in (35)

may be reduced:

Ap 4+ e® A+ eMAPPA=co|Ay|=c, Imcy=0. (40)

Looking for time-independent solutions, a cubic equation for the
square modulus of A readily follows:

[A]° +2cos x|A[* + [A]P = c* =0, x =& —n, (41)

which has either three positive roots, or a single positive root. An
elementary analysis shows that necessary and sufficient conditions of

the existence of three roots are:




2 4 1
F(x) = 2% 4+ 2cos x + , xi:—gi\/gcos%(—g. (43)

Analysis of stability of a stationary solution shows that:
e In case of a single root, it is always stable

e In the case of three roots, the largest and the smallest are stable,

while the intermediate one is unstable.

Stable solutions are attracting in the phase space of ReA, ImA.

Remark: depending on the coeflicients, zero may lie in the domain of

attraction of either smaller or larger root.
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Figure 5: The phase portrait of the system (40) with n = —.4m, & =
197 /20, ¢ = .4




Figure 6: The phase portrait of the system (40) with n = 7/2, £ =
197 /20, ¢ = .3




5 The effects of spatial modulation

We consider a (typical) case of strong baroclinic zonal current ~ ¢~z
in the absence of the barotropic zonal current ¢ = 0, and introduce
slow spatial modulation in the zonal direction of the baroclinic and
barotropic waves with the scale X = e2z. (o= 3 = —1) The
technicalities of the analysis follow Reznik and Zeitlin (2006). The

"synthetic" modulation equations for A and A, follow:

(O, + 20y ) Ay — 2L (o) 8%y Ay = 0, (44)

(Or, + Cgcax) A + ¢ 5 (abt)” 0% xA+ (p+ig)A

+  (P+iQ)|APPA] = —eZcpAy. (45)




Here T7 = E%t, obtb¢ are frequencies of the barotropic and the

baroclinic waves, as expressed via their corresponding dispersion

bt,bc
g

velocities, and prime denotes differentiation with respect to zonal

— (abt7bc)/ are the corresponding zonal group

relations, c

wavenumber k.




The group velocity of the Yanai wave may differ significantly from the

group velocity of the barotropic Rossby wave of the same frequency.
be ~ 1 bt ~ 1

E. g. for zonally long waves, k < 1, ¢, ~ 5 < ¢, ® —7. On the

contrary, the group velocities of the baroclinic and the barotropic

Rossby waves of the same frequency are practically the same.

In the former case, the only situation where barotropic and baroclinic
waves have possibility to interact is that of "gentle" modulation when
the fields depend on X; = ex, and not on X, and on 15 = €t, and not
on 1% . In this case dispersion effects are weak, and

8T2 Aw + Cgt8X1 A¢ = 0, (46)

Or, A+ c20x, A+ (p+igQ) A+ (P +iQ)|APA = —cpAy. (47
g




In the latter case by choosing the reference frame moving with the
common group velocity we get:
(

8T1 Aw N 2

(") 9% Ay =0, (48)

OrA— = (") 0%y A+ (p+iQ) A+ (P +iQ)|APA = —coAy. (49)

2
This is a GL-equation for A forced by the wave-packet of barotropic

waves which, in turn, is subject to dispersion.

Finally, if there is no spatial modulation of the barotropic wave
(plane barotropic wave occupying the whole equatorial plane) we get,
by changing the reference frame, the equation (49) with constant A,.




Remarkl: For P = 0, which is the case of short enough waves

1 2 1
k> ——, [k >/ =12,
2v/3 3

for Yanai and Rossby waves, respectively, by rescaling A with

time-depending phase a nonlinear Schrodinger equation with

oscillating forcing and linear damping results.

Remark2: In the case with two different X - independent stationary

solutions the domain-wall like structures (spatio-temporal

organization) are expected.
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Figure 7: "No-dispersion" case, DNS of (46), (47): profiles of
ReA, ImA (left panel), and AbsA (right panel) at T, = 30 in a refer-

erence frame moving with the barotropic wave; n = —.4m, £ = 197/20,

the barotropic wave is Gaussian with max. amplitude .4 covering the

domain of attraction of both stationary states.
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Figure 8: "Dispersion" case, DNS of (48), (49) : spatio-temporal evo-
lution of A, (left panel), and A (right panel); n = —.47, £ = 197/20
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Figure 9: Plane barotropic wave case, DNS of (49) with constant A,

such that two different stationary solutions exist: section of AbsA at
T =30;n=—4r, £ =197/20




6 Conclusions

e Baroclinic zonal current at the equator acts as a resonator: it

responds to certain incoming barotropic waves by amplifying

(from the pre-existing noise) the trapped baroclinic Yanai and/or

Rossby waves which grow to significant amplitudes, and then are

nonlinearly saturated.

In the certain range of parameters, multiple equilibria of the
modulation equation exist, leading to bifurcations in the initial
values of the baroclinic amplitudes and to spatio-temporal

organization.




