
Resonant ex
itation of trapped equatorialwaves. Part 2. Wave-Wave-Mean �owIntera
tionsG. Reznik (Shirshov, Mos
ow) and V. Zeitlin (LMD-ENS, Paris)Plan:
• 2-layer equatorial dynami
s: model and linear wave spe
trum.

• The main ideas of the approa
h and a reminder of previousresults.

• Barotropi
/baro
lini
 wave resonan
e in the presen
e of the zonal�ow.

• Nonlinear saturation in the 
ase of barotropi
 - baro
lini
- meanresonan
e.

• E�e
ts of spatial modulation.



1 2-layer Equatorial Rotating ShallowWater model and its linear spe
trum

1.1 Equations of motionMomentum and mass 
onservation equations in ea
h layer:

∂tui + ui · ∇ui + βyẑ × ui +
1

ρi
∇πi = 0 , i = 1, 2; (1)

∂thi + ∇ · (uihi) = 0 , i = 1, 2, (2)

ui = (ui(x, y, t), vi(x, y, t)) - velo
ities, ρi - densities of the layers,
lose to ea
h other,

π2 = π1 − ρ1g
′h1 g′ = g(ρ2 − ρ1)/ρ1 , (3)B.
.: rigid lid and �at bottom.



Barotropi
 and the baro
lini
 velo
ities:

ubt =
h1u1 + h2u2

H
, ubc = u1 − u2. (4)Rigid lid ⇒ ∇ · ubt = 0 → barotropi
 streamfun
tion ψ.Equations of motion:

∇2ψt + ψx = ǫ
[

−J(ψ,∇2ψ) − s(∂xx − ∂yy) [(1 + ǫqh)(uv)]

+ s∂xy
[

(1 + ǫqh)(u2 − v2)
]

)
] (5)

ut + ∇h+ yẑ × u = ǫ [−J(ψ,u) + u · ∇(ẑ ×∇ψ) − qu · ∇u

+ ǫs (2hu · ∇u + uu · ∇h)] , (6)

ht + ∇ · u = ǫ
[

−J(ψ, h) − q∇ · (uh) + ǫs∇ ·
(

h2
u

)]

. (7)



1.2 Parameters and s
aling

q =
H − 2H1

H
, s =

Hs

H
, ǫ =

∆H

Hs

, (8)

∆H denotes a typi
al variation of the interfa
e, Hs = H1(H−H1)
H

. Thefollowing s
aling is used to non-dimensionalize the model:

L =
(g′Hs)

1

4

√
β

; T =
1

βL
; U =

g′∆H

βL2
. (9)



1.3 Linear wave spe
trumBarotropi
 Rossby waves - propagate at any angle with respe
t to theequator:
ψ̃0 = Aψe

i(θ+ly) + c.c.; θ = kx− σt. (10)Dispersion relation
σ = −k/(k2 + l2). (11)Trapped baro
lini
 waves

(ũ, ṽ, h̃) = (iUm, Vm, iHm)Aeiθm + c.c.; θm = kx− σmt (12)with the dispersion relation
σ3
m − (k2 + 2m+ 1)σm − k = 0; m = 0, 1, 2, ... , (13)

m - meridional wavenumber of the trapped wave.Equator is a wave-guide transparent for some type of waves!



For m > 0, and k ≤ 0 the lower bran
hes of (13) 
orrespond to theequatorial Rossby waves. The upper bran
hes des
ribe equatorialinertia-gravity waves. m = 0 
orresponds to Yanai (mixedRossby-gravity) waves, m = −1 
orresponds to dispersionless Kelvinwave. The fun
tions Um, Vm = φm, Hm are strongly lo
alized nearthe equator (y = 0). They are expressed in terms of the paraboli

ylinder fun
tions:
φm(y) =

Hm(y)e−
y2

2

√

2mm!
√
π
, Um(y) =

σmyφm − kφ′m
σ2
m − k2

, Hm(y) =
kyφm − σmφ

′
m

σ2
m − k2

,(14)where Hm(y) are the Hermite polynomials and the prime means y-di�erentiation.Baro
lini
/barotropi
 zonal �ow - exa
t solution of (5 - 7):
ū = ū(y), h̄ = h̄(y), yū+ h̄y = 0; ψ̄ = ψ̄(y). (15)
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Figure 1: The dispersion 
urves for trapped equatorial waves. Modeswith m = −1, 0, 1, 2 are displayed



2 The main ideas and a reminder ofprevious results

2.1 The philosophy of the approa
hLook for weakly nonlinear intera
tions of the (plane) barotropi
 wavepassing through the equator with:1. a pair of trapped baro
lini
 waves2. a trapped baro
lini
 wave and an equatorial zonal �owThese may produ
e a resonant growth of the baro
lini
 waves (aparametri
, or sub-harmoni
 resonan
e) in the equatorial waveguidethus be
oming "semi-transparent". If this is the 
ase, study eventualnonlinear saturation and then the e�e
ts of spatial modulation.



If works, expe
t multiple equilibria in the resulting Landau equation(without spatial modulation) and nontrivial spatio-temporalorganization in the Ginzburg-Landau (GL) type equation (withspatial modulation). A (single?) known in GFD example of trappedwaves ex
ited by free waves: bea
h waves (Minzoni & Whitham,1977).Work on parametri
 ex
itation of topographi
 trapped waves inprogress (Reznik & Zeitlin, 2007).



2.2 Reminder of the results on three-waveresonan
es (Reznik & Zeitlin, 2006)1. A pair of trapped baro
lini
 Rossby or Yanai waves and abarotropi
 wave with
k1 + k2 = k; σ1 + σ2 = σ, (16)where σ1,2 verify (13) for some m1,2, and σ veri�es (11) for some

l do resonate. Parti
ular 
ase of "pure" parametri
 resonan
e:

k1 = k2 = k/2. Solutions of the syn
hronism 
onditions (16) aredense in the phase-spa
e k, l.2. The resonant growth of baro
lini
 wave(s) is always saturatednonlinearly. In the k1 = k2 
ase Landau equation has twodi�erent stationary solutions. In the k1 6= k2 the saturatedamplitudes slowly os
illate in time.



3. A GL-type modulation equation arises in the spatially modulated

k1 = k2 
ase
AT − i

2
σ̂′′(k̂)AXX + LAψĀ+ (P + iQ) |A|2A = 0, (17)giving "domain wall" and "dark soliton" patterns ofspatio-temporal organisation. A pair of 
oupled GL-typeequations arises in the spatially modulated k1 6= k2 
ase.



Figure 2: Typi
al resonan
e domain in the phase-spa
e of thebarotropi
 wave. Yanai - Rossby resonan
e
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Figure 3: DNS of the GL-type equation: formation of "dark soliton"in AbsA



3 Barotropi
-baro
lini
 wave resonan
e inthe presen
e of a zonal �ow

3.1 Syn
hronism 
onditionsThe barotropi
 and baro
lini
 waves should have the same k, σ.Possible if
l2 = 2m+ 1 − σ2

m, (18)For baro
lini
 Rossby and Yanai waves σm < 1 and for a givenbaro
lini
 mode m the 
orresponding barotropi
 mode exists.

• Yanai wave, m = 0:

l2 = 1 − σ2
0 = −kσ0, σ0 = k/2 +

√

1 + k2/4. (19)



• Rossby wave, m ≥ 1. In this 
ase with high a

ura
y

σm ≃ − k

k2 + 2m+ 1

(20)and

l2 ≃ 2m+ 1 − k2

(k2 + 2m+ 1)2
≈ 2m+ 1. (21)
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Figure 4: Solutions to syn
hronism 
onditions in the phase-spa
e ofthe barotropi
 wave.



3.2 Removal of resonan
esFor
ed linear system arising at ea
h order of expansion innonlinearity has the form:
∇2ψt + ψx = Qψ (22)

ut − yv + hx = Qu, vt + yu+ hy = Qv, ht + ux + vy = Qh. (23)Solution is bounded provided the following orthogonality 
onditionsare satis�ed:

〈ψ̂Qψ〉x,y,t = 0, (24)

∫ ∞

−∞

dy 〈ûQu + v̂Qv + ĥQh〉x,t = 0, (25)



where ψ̂, û, v̂, ĥ is an arbitrary bounded solution of the homogeneousequations (22), (23) and the angles denote the averaging:

〈...〉x = lim
Lx→∞

1

2Lx

∫ Lx

−Lx

dx .... (26)In our problem, the sour
e terms have the form:

Qψ,...,h =
∑

q

Qqψ,...,h(y)e
i(kqx−σqt), (27)

with Qqψ,...,h(y) rapidly de
aying at y → ±∞. For su
h Qψ,...,h the
onditions (24), (25) are not only ne
essary, but also su�
ient forexisten
e of bounded solutions to (22), (23) if kq 6= 0, σq 6= 0.



3.3 Results of straightforward perturbationexpansionMulti-times
ale expansion:
(ψ, u, v, h) = (ψ(0), u(0), v(0), h(0))(x, y, t, T, ...)+ǫ(ψ(1), u(1), v(1), h(1))(x, y, t, T, ...)+

(ψ(0), u(0), v(0), h(0)) = (ψ̃(0), ũ(0) + ū(0), ṽ(0) + v̄(0), h̃(0) + h̄(0)), Tilde- waves, bar - zonal �ow. Lowest order results:

• Barotropi
 wave remains un
hanged: Aψ does not depend on T ,

• Zonal �ow ū(0), h̄(0) does not 
hange in time (Eliassen-Palm),

• Slow-time evolution of the amplitude of the baro
lini
 wave:

a0AT + iqLA = −kLψAψ. (28)



Solution:
A =

ikLψ
qL

Aψ + C0e
−

qL
a0
T , C0 = const. (29)



The 
oe�
ients:
a0 =

∫ ∞

−∞

dy (U2
m + φ2

m +H2
m),

Lψ =

∫ ∞

−∞

dy eily
[

h̄(0)
y Hm − (kφm + 2ilUm + Umy

)ū(0)
]

, (30)

L =

∫ ∞

−∞

dy
(

[

k(U2
m + φ2

m +H2
m) + (Umφm)y

]

ū(0)

+ (kHmUm + φmHmy
)h̄(0)

)

,



If q L = 0 then linear growth:

A =
−kLψ
a0

AψT + C0 (31)For resonant growth it is ne
essary that:

• either q = 0 - layers of equal depth,
• or L = 0 - spe
ial zonal �owNevertheless growth always results for slightly detuned frequen
ies:

σbt = σbc + ǫδ, with δ = qL
a0

. In what follows q = 0 for te
hni
alsimpli
ity.



4 Nonlinear saturation of growth in the
ase of barotropi
-baro
lini
-mean�owresonan
e.

4.1 General modulation equationMethod of studying saturation: rearrangement of asymptoti
expansions. Solution is sought in the form:
ψ(0) = Aψe

i(θ+ly) + c.c.+ ǫγψ̄(y) + ψ(1)(x, y, t, Tβ′ , ǫ),

(u(0), v(0), h(0)) = ǫα(ū(0), 0, h̄(0))(y, Tα′) + ǫβ(iUm, φm, iHm)A(Tβ′)eiθ

+ (u(1), v(1), h(1))(x, y, t, Tα′ , Tβ′ , ǫ) + c.c, (32)where Tα′,β′ = ǫα
′,β′

t, α′, β′ > 0, and it is supposed that the mean�ow is su�
iently intense: 1 < α ≤ 0, γ ≤ 0.



Parameters α, γ are �xed, and the value of β whi
h determines thesaturated baro
lini
 amplitude (β < 0 in su
h 
ase) is to be found.The 
orre
tion to the barotropi
 wave is determined from:

∇2ψ
(1)
t + ψ(1)

x = ǫs
[

−(∂xx − ∂yy)(u
(0)v(0)) + ∂xy(u

(0)2 − v(0)2)
]

,(33)It is this 
orre
tion whi
h will give either linear or nonlinearsaturation of the trapped wave growth via, resp., intera
tion withzonal �ow and the trapped wave, or triad intera
tion with thetrapped wave .



Eliminating resonan
es while �nding the baro
lini
 
orre
tion

(u(1), v(1), h(1)) leads to the modulation equation for A:

ǫβ
′

a0ATβ′
+ǫ2+2α(p+iq)A+ǫ1+γiLψ0

A+ǫ2+2β(P+iQ)|A|2A = −ǫ1+α−βkLψ.(34)One re
ognizes in the r.h.s. the previously studied resonant for
ing ofthe baro
lini
 wave.
• p, q arise from wave-mean-mean intera
tions,
• Lψ0

arises from wave -barotropi
 �ow intera
tion,
• P,Q arise from three-wave intera
tion.



4.2 Analysis of possible regimes and 
anoni
almodulation equationAnalysis of the modulation equation in the absen
e of the barotropi

omponent of the zonal �ow shows that at α ≤ − 1
2 the linearsaturation dominates, while at α ≥ − 1

2 it is the nonlinear one. Inboth 
ases β ≥ − 1
2 , and thus the limiting value of A do not ex
eed

ǫ−
1

2 , whi
h is a
hieved at α = β = − 1
2 . The slow time-s
ale isdetermined by β′ = 1 + α− β.In the presen
e of the barotropi
 
omponent of the zonal �ow, if thislatter is weak with respe
t to the baro
lini
 �ow, its role is redu
edto 
hanging the linear saturation 
oe�
ients. If the barotropi
 �ow isstrong it a
ts similar to non-zero q in the previous analysis and, thusa detuning is ne
essary to have growing and then saturating solutions.



"Optimal" 
ase α = β = − 1
2 , no barotropi
 �ow (detuningotherwise). Modulation equation:

AT2
+ (p̄+ iq̄)A+ (P̄ + iQ̄)|A|2A = −kLψ

a0
Aψ, P̄ ≥ 0, p̄ > 0. (35)The real parts of p̄, P̄ are:

p̄ =
1

8|l|σ

∣

∣

∣

∣

∫ +∞

−∞

dy F1(y)e
ily

∣

∣

∣

∣

, (36)

P̄ =
1

16|l̄|σ

∣

∣

∣

∣

∫ +∞

−∞

dy F2(y)e
ily

∣

∣

∣

∣

, if l̄2 = l2 − 3k2 < 0,

P̄ = 0, if l̄2 = l2 − 3k2 > 0. (37)



Here
F1 = (φū0)

′′−2k(Uū0)
′+k2φū0, F1 = (φU)′′−2k(U2 +φ2)′+4k2φU,(38)and the index m is omitted in meridional wave stru
ture fun
tions(14). We do not give the expression for q̄, Q̄ whi
h have similarstru
ture but are rather 
umbersome.Most important:

p̄ ≥ 0, P̄ ≥ 0, (39)and, hen
e, the 
orresponding terms produ
e saturation of ASaturation due to p will be 
alled "linear" and that due to P"nonlinear".



4.3 Analysis of saturated solutionsBy renormalizing A and T the number of relevant parameters in (35)may be redu
ed:
AT + eiξA+ eiη|A|2A = c0 |Aψ| ≡ c, Im c0 = 0. (40)Looking for time-independent solutions, a 
ubi
 equation for thesquare modulus of A readily follows:
|A|6 + 2 cosχ|A|4 + |A|2 − c2 = 0, χ = ξ − η, (41)whi
h has either three positive roots, or a single positive root. Anelementary analysis shows that ne
essary and su�
ient 
onditions ofthe existen
e of three roots are:

cosχ < −
√

3

2
, F (x+) < c2 < F (x−), (42)



where
F (x) = x3 + 2 cosχ+ x, x± = −2

3
±

√

4

9
cos2 χ− 1

3
. (43)Analysis of stability of a stationary solution shows that:

• In 
ase of a single root, it is always stable

• In the 
ase of three roots, the largest and the smallest are stable,while the intermediate one is unstable.Stable solutions are attra
ting in the phase spa
e of ReA, ImA.Remark: depending on the 
oe�
ients, zero may lie in the domain ofattra
tion of either smaller or larger root.
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Figure 5: The phase portrait of the system (40) with η = −.4π, ξ =

19π/20, c = .4



-0.5 0.5 1

-1

-0.5

0.5

1

1.5

Figure 6: The phase portrait of the system (40) with η = π/2, ξ =

19π/20, c = .3



5 The e�e
ts of spatial modulationWe 
onsider a (typi
al) 
ase of strong baro
lini
 zonal 
urrent ∼ ǫ−
1

2in the absen
e of the barotropi
 zonal 
urrent ψ̄ ≡ 0, and introdu
eslow spatial modulation in the zonal dire
tion of the baro
lini
 andbarotropi
 waves with the s
ale X = ǫ
1

2x. (α = β = − 1
2 ) Thete
hni
alities of the analysis follow Reznik and Zeitlin (2006). The"syntheti
" modulation equations for A and Aψ follow:

(

∂T1
+ cbtg ∂X

)

Aψ − ǫ
1

2

i

2

(

σbt
)′′

∂2
XXAψ = 0, (44)

(

∂T1
+ cbcg ∂X

)

A + ǫ
1

2

[

− i

2

(

σbt
)′′

∂2
XXA+ (p̄+ iq̄)A

+ (P + iQ)|A|2A
]

= −ǫ 1

2 c0Aψ. (45)



Here T1 = ǫ
1

2 t, σbt,bc are frequen
ies of the barotropi
 and thebaro
lini
 waves, as expressed via their 
orresponding dispersionrelations, cbt,bcg =
(

σbt,bc
)′ are the 
orresponding zonal groupvelo
ities, and prime denotes di�erentiation with respe
t to zonalwavenumber k.



The group velo
ity of the Yanai wave may di�er signi�
antly from thegroup velo
ity of the barotropi
 Rossby wave of the same frequen
y.E. g. for zonally long waves, k ≪ 1, cbcg ≈ 1
2 ≪ cbtg ≈ − 1

k

. On the
ontrary, the group velo
ities of the baro
lini
 and the barotropi
Rossby waves of the same frequen
y are pra
ti
ally the same.In the former 
ase, the only situation where barotropi
 and baro
lini
waves have possibility to intera
t is that of "gentle" modulation whenthe �elds depend on X1 = ǫx, and not on X , and on T2 = ǫt, and noton T1. In this 
ase dispersion e�e
ts are weak, and
∂T2

Aψ + cbtg ∂X1
Aψ = 0, (46)

∂T2
A+ cbcg ∂X1

A+ (p̄+ iq̄)A+ (P̄ + iQ̄)|A|2A = −c0Aψ. (47)



In the latter 
ase by 
hoosing the referen
e frame moving with the
ommon group velo
ity we get:

∂T1
Aψ − i

2

(

σbt
)′′

∂2
XXAψ = 0, (48)

∂T1
A− i

2

(

σbt
)′′

∂2
XXA+ (p̄+ iq̄)A+ (P̄ + iQ̄)|A|2A = −c0Aψ. (49)This is a GL-equation for A for
ed by the wave-pa
ket of barotropi
waves whi
h, in turn, is subje
t to dispersion.Finally, if there is no spatial modulation of the barotropi
 wave(plane barotropi
 wave o

upying the whole equatorial plane) we get,by 
hanging the referen
e frame, the equation (49) with 
onstant Aψ.



Remark1: For P = 0, whi
h is the 
ase of short enough waves

|k| > 1

2
√

3
, |k| ≥

√

2m+ 1

3
,m = 1, 2, ... (50)for Yanai and Rossby waves, respe
tively, by res
aling A withtime-depending phase a nonlinear S
hrodinger equation withos
illating for
ing and linear damping results.Remark2: In the 
ase with two di�erent X - independent stationarysolutions the domain-wall like stru
tures (spatio-temporalorganization) are expe
ted.
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Figure 7: "No-dispersion" 
ase, DNS of (46), (47): pro�les of

ReA, ImA (left panel), and AbsA (right panel) at T2 = 30 in a refer-eren
e frame moving with the barotropi
 wave; η = −.4π, ξ = 19π/20,the barotropi
 wave is Gaussian with max. amplitude .4 
overing thedomain of attra
tion of both stationary states.
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Figure 8: "Dispersion" 
ase, DNS of (48), (49) : spatio-temporal evo-lution of Aψ (left panel), and A (right panel); η = −.4π, ξ = 19π/20
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Figure 9: Plane barotropi
 wave 
ase, DNS of (49) with 
onstant Aψsu
h that two di�erent stationary solutions exist: se
tion of AbsA at

T = 30; η = −.4π, ξ = 19π/20



6 Con
lusions
• Baro
lini
 zonal 
urrent at the equator a
ts as a resonator: itresponds to 
ertain in
oming barotropi
 waves by amplifying(from the pre-existing noise) the trapped baro
lini
 Yanai and/orRossby waves whi
h grow to signi�
ant amplitudes, and then arenonlinearly saturated.
• In the 
ertain range of parameters, multiple equilibria of themodulation equation exist, leading to bifur
ations in the initialvalues of the baro
lini
 amplitudes and to spatio-temporalorganization.


