
Resonant exitation of trapped equatorialwaves. Part 2. Wave-Wave-Mean �owInterationsG. Reznik (Shirshov, Mosow) and V. Zeitlin (LMD-ENS, Paris)Plan:
• 2-layer equatorial dynamis: model and linear wave spetrum.

• The main ideas of the approah and a reminder of previousresults.

• Barotropi/barolini wave resonane in the presene of the zonal�ow.

• Nonlinear saturation in the ase of barotropi - barolini- meanresonane.

• E�ets of spatial modulation.



1 2-layer Equatorial Rotating ShallowWater model and its linear spetrum

1.1 Equations of motionMomentum and mass onservation equations in eah layer:

∂tui + ui · ∇ui + βyẑ × ui +
1

ρi
∇πi = 0 , i = 1, 2; (1)

∂thi + ∇ · (uihi) = 0 , i = 1, 2, (2)

ui = (ui(x, y, t), vi(x, y, t)) - veloities, ρi - densities of the layers,lose to eah other,

π2 = π1 − ρ1g
′h1 g′ = g(ρ2 − ρ1)/ρ1 , (3)B..: rigid lid and �at bottom.



Barotropi and the barolini veloities:

ubt =
h1u1 + h2u2

H
, ubc = u1 − u2. (4)Rigid lid ⇒ ∇ · ubt = 0 → barotropi streamfuntion ψ.Equations of motion:

∇2ψt + ψx = ǫ
[

−J(ψ,∇2ψ) − s(∂xx − ∂yy) [(1 + ǫqh)(uv)]

+ s∂xy
[

(1 + ǫqh)(u2 − v2)
]

)
] (5)

ut + ∇h+ yẑ × u = ǫ [−J(ψ,u) + u · ∇(ẑ ×∇ψ) − qu · ∇u

+ ǫs (2hu · ∇u + uu · ∇h)] , (6)

ht + ∇ · u = ǫ
[

−J(ψ, h) − q∇ · (uh) + ǫs∇ ·
(

h2
u

)]

. (7)



1.2 Parameters and saling

q =
H − 2H1

H
, s =

Hs

H
, ǫ =

∆H

Hs

, (8)

∆H denotes a typial variation of the interfae, Hs = H1(H−H1)
H

. Thefollowing saling is used to non-dimensionalize the model:

L =
(g′Hs)

1

4

√
β

; T =
1

βL
; U =

g′∆H

βL2
. (9)



1.3 Linear wave spetrumBarotropi Rossby waves - propagate at any angle with respet to theequator:
ψ̃0 = Aψe

i(θ+ly) + c.c.; θ = kx− σt. (10)Dispersion relation
σ = −k/(k2 + l2). (11)Trapped barolini waves

(ũ, ṽ, h̃) = (iUm, Vm, iHm)Aeiθm + c.c.; θm = kx− σmt (12)with the dispersion relation
σ3
m − (k2 + 2m+ 1)σm − k = 0; m = 0, 1, 2, ... , (13)

m - meridional wavenumber of the trapped wave.Equator is a wave-guide transparent for some type of waves!



For m > 0, and k ≤ 0 the lower branhes of (13) orrespond to theequatorial Rossby waves. The upper branhes desribe equatorialinertia-gravity waves. m = 0 orresponds to Yanai (mixedRossby-gravity) waves, m = −1 orresponds to dispersionless Kelvinwave. The funtions Um, Vm = φm, Hm are strongly loalized nearthe equator (y = 0). They are expressed in terms of the paraboliylinder funtions:
φm(y) =

Hm(y)e−
y2

2

√

2mm!
√
π
, Um(y) =

σmyφm − kφ′m
σ2
m − k2

, Hm(y) =
kyφm − σmφ

′
m

σ2
m − k2

,(14)where Hm(y) are the Hermite polynomials and the prime means y-di�erentiation.Barolini/barotropi zonal �ow - exat solution of (5 - 7):
ū = ū(y), h̄ = h̄(y), yū+ h̄y = 0; ψ̄ = ψ̄(y). (15)
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Figure 1: The dispersion urves for trapped equatorial waves. Modeswith m = −1, 0, 1, 2 are displayed



2 The main ideas and a reminder ofprevious results

2.1 The philosophy of the approahLook for weakly nonlinear interations of the (plane) barotropi wavepassing through the equator with:1. a pair of trapped barolini waves2. a trapped barolini wave and an equatorial zonal �owThese may produe a resonant growth of the barolini waves (aparametri, or sub-harmoni resonane) in the equatorial waveguidethus beoming "semi-transparent". If this is the ase, study eventualnonlinear saturation and then the e�ets of spatial modulation.



If works, expet multiple equilibria in the resulting Landau equation(without spatial modulation) and nontrivial spatio-temporalorganization in the Ginzburg-Landau (GL) type equation (withspatial modulation). A (single?) known in GFD example of trappedwaves exited by free waves: beah waves (Minzoni & Whitham,1977).Work on parametri exitation of topographi trapped waves inprogress (Reznik & Zeitlin, 2007).



2.2 Reminder of the results on three-waveresonanes (Reznik & Zeitlin, 2006)1. A pair of trapped barolini Rossby or Yanai waves and abarotropi wave with
k1 + k2 = k; σ1 + σ2 = σ, (16)where σ1,2 verify (13) for some m1,2, and σ veri�es (11) for some

l do resonate. Partiular ase of "pure" parametri resonane:

k1 = k2 = k/2. Solutions of the synhronism onditions (16) aredense in the phase-spae k, l.2. The resonant growth of barolini wave(s) is always saturatednonlinearly. In the k1 = k2 ase Landau equation has twodi�erent stationary solutions. In the k1 6= k2 the saturatedamplitudes slowly osillate in time.



3. A GL-type modulation equation arises in the spatially modulated

k1 = k2 ase
AT − i

2
σ̂′′(k̂)AXX + LAψĀ+ (P + iQ) |A|2A = 0, (17)giving "domain wall" and "dark soliton" patterns ofspatio-temporal organisation. A pair of oupled GL-typeequations arises in the spatially modulated k1 6= k2 ase.



Figure 2: Typial resonane domain in the phase-spae of thebarotropi wave. Yanai - Rossby resonane
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Figure 3: DNS of the GL-type equation: formation of "dark soliton"in AbsA



3 Barotropi-barolini wave resonane inthe presene of a zonal �ow

3.1 Synhronism onditionsThe barotropi and barolini waves should have the same k, σ.Possible if
l2 = 2m+ 1 − σ2

m, (18)For barolini Rossby and Yanai waves σm < 1 and for a givenbarolini mode m the orresponding barotropi mode exists.

• Yanai wave, m = 0:

l2 = 1 − σ2
0 = −kσ0, σ0 = k/2 +

√

1 + k2/4. (19)



• Rossby wave, m ≥ 1. In this ase with high auray

σm ≃ − k

k2 + 2m+ 1

(20)and

l2 ≃ 2m+ 1 − k2

(k2 + 2m+ 1)2
≈ 2m+ 1. (21)
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Figure 4: Solutions to synhronism onditions in the phase-spae ofthe barotropi wave.



3.2 Removal of resonanesFored linear system arising at eah order of expansion innonlinearity has the form:
∇2ψt + ψx = Qψ (22)

ut − yv + hx = Qu, vt + yu+ hy = Qv, ht + ux + vy = Qh. (23)Solution is bounded provided the following orthogonality onditionsare satis�ed:

〈ψ̂Qψ〉x,y,t = 0, (24)

∫ ∞

−∞

dy 〈ûQu + v̂Qv + ĥQh〉x,t = 0, (25)



where ψ̂, û, v̂, ĥ is an arbitrary bounded solution of the homogeneousequations (22), (23) and the angles denote the averaging:

〈...〉x = lim
Lx→∞

1

2Lx

∫ Lx

−Lx

dx .... (26)In our problem, the soure terms have the form:

Qψ,...,h =
∑

q

Qqψ,...,h(y)e
i(kqx−σqt), (27)

with Qqψ,...,h(y) rapidly deaying at y → ±∞. For suh Qψ,...,h theonditions (24), (25) are not only neessary, but also su�ient forexistene of bounded solutions to (22), (23) if kq 6= 0, σq 6= 0.



3.3 Results of straightforward perturbationexpansionMulti-timesale expansion:
(ψ, u, v, h) = (ψ(0), u(0), v(0), h(0))(x, y, t, T, ...)+ǫ(ψ(1), u(1), v(1), h(1))(x, y, t, T, ...)+

(ψ(0), u(0), v(0), h(0)) = (ψ̃(0), ũ(0) + ū(0), ṽ(0) + v̄(0), h̃(0) + h̄(0)), Tilde- waves, bar - zonal �ow. Lowest order results:

• Barotropi wave remains unhanged: Aψ does not depend on T ,

• Zonal �ow ū(0), h̄(0) does not hange in time (Eliassen-Palm),

• Slow-time evolution of the amplitude of the barolini wave:

a0AT + iqLA = −kLψAψ. (28)



Solution:
A =

ikLψ
qL

Aψ + C0e
−

qL
a0
T , C0 = const. (29)



The oe�ients:
a0 =

∫ ∞

−∞

dy (U2
m + φ2

m +H2
m),

Lψ =

∫ ∞

−∞

dy eily
[

h̄(0)
y Hm − (kφm + 2ilUm + Umy

)ū(0)
]

, (30)

L =

∫ ∞

−∞

dy
(

[

k(U2
m + φ2

m +H2
m) + (Umφm)y

]

ū(0)

+ (kHmUm + φmHmy
)h̄(0)

)

,



If q L = 0 then linear growth:

A =
−kLψ
a0

AψT + C0 (31)For resonant growth it is neessary that:

• either q = 0 - layers of equal depth,
• or L = 0 - speial zonal �owNevertheless growth always results for slightly detuned frequenies:

σbt = σbc + ǫδ, with δ = qL
a0

. In what follows q = 0 for tehnialsimpliity.



4 Nonlinear saturation of growth in thease of barotropi-barolini-mean�owresonane.

4.1 General modulation equationMethod of studying saturation: rearrangement of asymptotiexpansions. Solution is sought in the form:
ψ(0) = Aψe

i(θ+ly) + c.c.+ ǫγψ̄(y) + ψ(1)(x, y, t, Tβ′ , ǫ),

(u(0), v(0), h(0)) = ǫα(ū(0), 0, h̄(0))(y, Tα′) + ǫβ(iUm, φm, iHm)A(Tβ′)eiθ

+ (u(1), v(1), h(1))(x, y, t, Tα′ , Tβ′ , ǫ) + c.c, (32)where Tα′,β′ = ǫα
′,β′

t, α′, β′ > 0, and it is supposed that the mean�ow is su�iently intense: 1 < α ≤ 0, γ ≤ 0.



Parameters α, γ are �xed, and the value of β whih determines thesaturated barolini amplitude (β < 0 in suh ase) is to be found.The orretion to the barotropi wave is determined from:

∇2ψ
(1)
t + ψ(1)

x = ǫs
[

−(∂xx − ∂yy)(u
(0)v(0)) + ∂xy(u

(0)2 − v(0)2)
]

,(33)It is this orretion whih will give either linear or nonlinearsaturation of the trapped wave growth via, resp., interation withzonal �ow and the trapped wave, or triad interation with thetrapped wave .



Eliminating resonanes while �nding the barolini orretion

(u(1), v(1), h(1)) leads to the modulation equation for A:

ǫβ
′

a0ATβ′
+ǫ2+2α(p+iq)A+ǫ1+γiLψ0

A+ǫ2+2β(P+iQ)|A|2A = −ǫ1+α−βkLψ.(34)One reognizes in the r.h.s. the previously studied resonant foring ofthe barolini wave.
• p, q arise from wave-mean-mean interations,
• Lψ0

arises from wave -barotropi �ow interation,
• P,Q arise from three-wave interation.



4.2 Analysis of possible regimes and anonialmodulation equationAnalysis of the modulation equation in the absene of the barotropiomponent of the zonal �ow shows that at α ≤ − 1
2 the linearsaturation dominates, while at α ≥ − 1

2 it is the nonlinear one. Inboth ases β ≥ − 1
2 , and thus the limiting value of A do not exeed

ǫ−
1

2 , whih is ahieved at α = β = − 1
2 . The slow time-sale isdetermined by β′ = 1 + α− β.In the presene of the barotropi omponent of the zonal �ow, if thislatter is weak with respet to the barolini �ow, its role is reduedto hanging the linear saturation oe�ients. If the barotropi �ow isstrong it ats similar to non-zero q in the previous analysis and, thusa detuning is neessary to have growing and then saturating solutions.



"Optimal" ase α = β = − 1
2 , no barotropi �ow (detuningotherwise). Modulation equation:

AT2
+ (p̄+ iq̄)A+ (P̄ + iQ̄)|A|2A = −kLψ

a0
Aψ, P̄ ≥ 0, p̄ > 0. (35)The real parts of p̄, P̄ are:

p̄ =
1

8|l|σ

∣

∣

∣

∣

∫ +∞

−∞

dy F1(y)e
ily

∣

∣

∣

∣

, (36)

P̄ =
1

16|l̄|σ

∣

∣

∣

∣

∫ +∞

−∞

dy F2(y)e
ily

∣

∣

∣

∣

, if l̄2 = l2 − 3k2 < 0,

P̄ = 0, if l̄2 = l2 − 3k2 > 0. (37)



Here
F1 = (φū0)

′′−2k(Uū0)
′+k2φū0, F1 = (φU)′′−2k(U2 +φ2)′+4k2φU,(38)and the index m is omitted in meridional wave struture funtions(14). We do not give the expression for q̄, Q̄ whih have similarstruture but are rather umbersome.Most important:

p̄ ≥ 0, P̄ ≥ 0, (39)and, hene, the orresponding terms produe saturation of ASaturation due to p will be alled "linear" and that due to P"nonlinear".



4.3 Analysis of saturated solutionsBy renormalizing A and T the number of relevant parameters in (35)may be redued:
AT + eiξA+ eiη|A|2A = c0 |Aψ| ≡ c, Im c0 = 0. (40)Looking for time-independent solutions, a ubi equation for thesquare modulus of A readily follows:
|A|6 + 2 cosχ|A|4 + |A|2 − c2 = 0, χ = ξ − η, (41)whih has either three positive roots, or a single positive root. Anelementary analysis shows that neessary and su�ient onditions ofthe existene of three roots are:

cosχ < −
√

3

2
, F (x+) < c2 < F (x−), (42)



where
F (x) = x3 + 2 cosχ+ x, x± = −2

3
±

√

4

9
cos2 χ− 1

3
. (43)Analysis of stability of a stationary solution shows that:

• In ase of a single root, it is always stable

• In the ase of three roots, the largest and the smallest are stable,while the intermediate one is unstable.Stable solutions are attrating in the phase spae of ReA, ImA.Remark: depending on the oe�ients, zero may lie in the domain ofattration of either smaller or larger root.
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Figure 5: The phase portrait of the system (40) with η = −.4π, ξ =

19π/20, c = .4
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Figure 6: The phase portrait of the system (40) with η = π/2, ξ =

19π/20, c = .3



5 The e�ets of spatial modulationWe onsider a (typial) ase of strong barolini zonal urrent ∼ ǫ−
1

2in the absene of the barotropi zonal urrent ψ̄ ≡ 0, and introdueslow spatial modulation in the zonal diretion of the barolini andbarotropi waves with the sale X = ǫ
1

2x. (α = β = − 1
2 ) Thetehnialities of the analysis follow Reznik and Zeitlin (2006). The"syntheti" modulation equations for A and Aψ follow:

(

∂T1
+ cbtg ∂X

)

Aψ − ǫ
1

2

i

2

(

σbt
)′′

∂2
XXAψ = 0, (44)

(

∂T1
+ cbcg ∂X

)

A + ǫ
1

2

[

− i

2

(

σbt
)′′

∂2
XXA+ (p̄+ iq̄)A

+ (P + iQ)|A|2A
]

= −ǫ 1

2 c0Aψ. (45)



Here T1 = ǫ
1

2 t, σbt,bc are frequenies of the barotropi and thebarolini waves, as expressed via their orresponding dispersionrelations, cbt,bcg =
(

σbt,bc
)′ are the orresponding zonal groupveloities, and prime denotes di�erentiation with respet to zonalwavenumber k.



The group veloity of the Yanai wave may di�er signi�antly from thegroup veloity of the barotropi Rossby wave of the same frequeny.E. g. for zonally long waves, k ≪ 1, cbcg ≈ 1
2 ≪ cbtg ≈ − 1

k

. On theontrary, the group veloities of the barolini and the barotropiRossby waves of the same frequeny are pratially the same.In the former ase, the only situation where barotropi and baroliniwaves have possibility to interat is that of "gentle" modulation whenthe �elds depend on X1 = ǫx, and not on X , and on T2 = ǫt, and noton T1. In this ase dispersion e�ets are weak, and
∂T2

Aψ + cbtg ∂X1
Aψ = 0, (46)

∂T2
A+ cbcg ∂X1

A+ (p̄+ iq̄)A+ (P̄ + iQ̄)|A|2A = −c0Aψ. (47)



In the latter ase by hoosing the referene frame moving with theommon group veloity we get:

∂T1
Aψ − i

2

(

σbt
)′′

∂2
XXAψ = 0, (48)

∂T1
A− i

2

(

σbt
)′′

∂2
XXA+ (p̄+ iq̄)A+ (P̄ + iQ̄)|A|2A = −c0Aψ. (49)This is a GL-equation for A fored by the wave-paket of barotropiwaves whih, in turn, is subjet to dispersion.Finally, if there is no spatial modulation of the barotropi wave(plane barotropi wave oupying the whole equatorial plane) we get,by hanging the referene frame, the equation (49) with onstant Aψ.



Remark1: For P = 0, whih is the ase of short enough waves

|k| > 1

2
√

3
, |k| ≥

√

2m+ 1

3
,m = 1, 2, ... (50)for Yanai and Rossby waves, respetively, by resaling A withtime-depending phase a nonlinear Shrodinger equation withosillating foring and linear damping results.Remark2: In the ase with two di�erent X - independent stationarysolutions the domain-wall like strutures (spatio-temporalorganization) are expeted.
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Figure 7: "No-dispersion" ase, DNS of (46), (47): pro�les of

ReA, ImA (left panel), and AbsA (right panel) at T2 = 30 in a refer-erene frame moving with the barotropi wave; η = −.4π, ξ = 19π/20,the barotropi wave is Gaussian with max. amplitude .4 overing thedomain of attration of both stationary states.
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Figure 8: "Dispersion" ase, DNS of (48), (49) : spatio-temporal evo-lution of Aψ (left panel), and A (right panel); η = −.4π, ξ = 19π/20
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Figure 9: Plane barotropi wave ase, DNS of (49) with onstant Aψsuh that two di�erent stationary solutions exist: setion of AbsA at

T = 30; η = −.4π, ξ = 19π/20



6 Conlusions
• Barolini zonal urrent at the equator ats as a resonator: itresponds to ertain inoming barotropi waves by amplifying(from the pre-existing noise) the trapped barolini Yanai and/orRossby waves whih grow to signi�ant amplitudes, and then arenonlinearly saturated.
• In the ertain range of parameters, multiple equilibria of themodulation equation exist, leading to bifurations in the initialvalues of the barolini amplitudes and to spatio-temporalorganization.


