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Motivation

The cornerstone of the established view on nonlinear
evolution random wave fields due to nonlinear quartet
interactions is that the spectra of any such random wave
field (e.g. water waves) evolve on the ε−4 timescale or
slower. ε is the typical wave steepness.

The wave frequency of the spectral peak is presumed to be
O(1).

Then the ε−4 evolution of the wave spectra is described by
the kinetic equation or, in the context of water waves, the
Hasselmann equation.



Awkward Facts for Wind Waves

Along with vast anecdotal evidence suggesting occurrence
of a faster field evolution, there are also a few well
documented measurements:

(i) in the field:
In situations of sudden change of wind direction the
wave field adjusts faster than predicts the kinetic
equation [van Vledder & Holthuijsen, 1993]
The relaxation time scale of short gravity waves
perturbed by internal waves is much shorter than
one would expect from the kinetic equation [Hughes
& Grant 1978]

(ii) in the tank: the observations of short wind waves
subject to abrupt change of wind by Waseda, Toba,
Tullin 2001 and Caulliez, 2007 suggest existence of a
very fast field evolution after a sudden change of wind.



.

We are unaware of any
attempts to explore
theoretically a possibility of a
faster field evolution.



Here we show that:

(i) a much faster (up to ε−2) evolution of wave spectra can
indeed occur,

(ii) explain why and when this happens.

(iii) propose a generalized kinetic equation able to describe
fast evolution.



Plan

1. Review of the basics of the established statistical
approach to water waves and of classical derivation of
the kinetic equation.

2. Identification of the crucial junction and derivation of the
generalized kinetic equation.

3. Explanation and interpretation of the O(ε−2)) evolution.

4. Results of DNS demonstrating examples of the O(ε−2))
evolution will be shown separately.



Review: (i) Pre-history

Consider 3D potential gravity waves on the free surface of
an incompressible fluid. Wave slopes are O(ε). Then the
eq-s of motion could be cast in the Hamiltonian form

∂ζ(x, t)

∂t
=

δH

δψ(x, t)
,

∂ψ(x, t)

∂t
= − δH

δζ(x, t)

where ψ(x, t) = ϕ(x, ζ(x, t), t), and the Hamiltonian H is the
total energy of the system.



Hamiltonian
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Zakharov’s complex amplitudes:
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√
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,

where ω(k) =
√
gk is the linear dispersion relation, k = |k|.

Equations for a(k)

i
∂a(k)

∂t
=

δH

δa∗(k)
,



Expansion in ε

Compact notation: a0 = a(k0), δ0−1−2 = δ(k0 − k1 − k2), etc.
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+
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+ . . .



"Reduced" Zakharov equation

Canonical transformation to nonlinear normal variables
a0 = b0 +O(ε) retains only essential nonlinear interactions
(shown in red).

The reduced Hamiltonian

H̃ =

∫

ω0b0b
∗

0 dk0 +
1

2

∫

T0123b
∗

0b
∗

1b2b3δ0+1−2−3 dk123 + . . . .

yields the "reduced" Zakharov equation

i
∂b0
∂t

= ω0b0 +

∫

T0123b
∗

1b2b3δ0+1−2−3 dk123 + . . .

(This is the starting point of our analysis.

Notation: δ0+1−2−3 = δ(k0 +k1 −k2 −k3), dk123 = dk1dk2dk3.



(ii) Statistical description

Now we consider ensembles of random wave fields (each
being governed by the deterministic Zakharov eq-n). We
are interested in the ensemble averaged characteristics of
the wave field.

Assumption of spatial homogeneity yields

< b∗0b1 >= n0δ0−1

brackets mean ensemble averaging, the second-order
correlator, n0 is the spectral density of wave action at
wavevector k = k0.

The classical problem is to find (and solve) a closed
equation in terms of n(k), i.e. to find evolution of wave
action spectral density n(k) with time.



.

The classical solution to this problem is the kinetic or
Hasselmann equation

∂n0

∂t
= 4π

∫

T 2
0123f0123δ0+1−2−3δ(∆ω) dk123

f0123 = n2n3(n0 + n1) − n0n1(n2 + n3),

∆ω = ω(k0) + ω(k1) − ω(k2) − ω(k3)



The key steps and assumptions

On multiplying the reduced Zakharov equation by b∗0, and its
c.c. by b0, upon ensemble averaging we immediately find

∂n0

∂t
= 2Im

∫

T0123J0123δ0+1−2−3 dk123

J
(0)
0123δ0+1−2−3 =< b∗0b

∗

1b2b3 >

Assumption of gaussianity yields

< b∗0b
∗

1b2b3 >= n0n1 (δ0−2δ1−3 + δ0−3δ1−2) .

which is a real quantity and, since T0123 is also real, does
not contribute to evolution of n0.

Completely random phases provide no spectral evolution!



Non-gaussian effects

Assuming quasi-gaussianity find non-gaussian correction

J
(1)
0123.

The cumulant J (1)
0123 is specified by an evolution equation

containing on the right-hand-side the sixth-order correlator
I012345. which by invoking the quasi-Gaussianity assumption
is replaced by the corresponding free-field Gaussian

correlator I(0)
012345 representable in terms of the products of

pair correlators. As a result we have
(

i
∂

∂t
+ ∆ω

)

J
(1)
0123 = 2T0123f0123,(1)

where ∆ω = ω0 + ω1 − ω2 − ω3, and
f0123 = n2n3(n0 + n1) − n0n1(n2 + n3)



The crucial assumption

It is usually assumed that n0 and, hence, f0123 depends on
slow time µt, such that µ/∆ω ≪ 1.

Then neglecting
∂

∂t
in

(

i
∂

∂t
+ ∆ω

)

J
(1)
0123 = 2T0123f0123 ⇒

J
(1)
0123(t) ≃

2T0123

∆ω
f0123.

This solution represents a large t asymptotics and is
understood in terms of generalized functions

J
(1)
0123(t) = 2T0123

[

P

∆ω
+ iπδ(∆ω)

]

f0123(t), (P is ‘principal value)

This asymptotic derivation yields the classic kinetic
equation and is valid as long as our interest is confined to
slow O(ε−4) evolution.



The new kinetic equation

If we allow for faster variability of statistical moments of
wave field, we can use the exact solution for J (1) in the form

J
(1)
0123(t) = −2iT0123

∫

t

0
e−i∆ω(τ−t)f0123 dτ + J

(1)
0123(0)ei∆ωt.

J
(1)
0123(0) is specified by initial conditions.

The resulting "generalized" kinetic equation reads

∂n0

∂t
= 4Re

∫

T 2
0123

[
∫

t

0
e−i∆ω(τ−t)f0123 dτ

]

δ0+1−2−3 dk123

+2Re
∫

[

iT0123J
(1)
0123(0)ei∆ωt

]

δ0+1−2−3 dk123.

The GKE tends to the classic KE for large times



Initial stages

In general setting the evolution of spectral density n
depends not only on the initial distribution of n, but also on

the initial distribution of J (1)
0123(0).

"Cold start ". Zero value of J (1)
0123(0) corresponds to the

situations where the wave field is initially free, so that the
wave components are not correlated, and waves begin to
interact only after t = 0. Then the GKE reads

∂n0

∂t
= 4

∫

T 2
0123

[
∫

t

0
cos[∆ω(τ − t)]f0123 dτ

]

δ0+1−2−3 dk123

∂n0

∂t
|t=0 = 0,

∂2n0

∂t2
|t=0 = 4

∫

T 2
0123f0123 dδ0+1−2−3 dk123



The Timescales

∂n0

∂t
|t=0 = 0,

∂2n0

∂t2
|t=0 = 4

∫

T 2
0123f0123 dδ0+1−2−3 dk123

Since n ∼ ε2 and the RHS is ∼ n3 ∼ ε6, then the timescale
of initial evolution is O(ε−2).

For generic initial conditions with non-zero J (1)
0123(0) the

second term on the RHS should be taken into account

2Re
∫

[

iT0123J
(1)
0123(0)ei∆ωt

]

δ0+1−2−3 dk123|t=o

= −2

∫

T0123ImJ
(1)
0123(0)δ0+1−2−3 dk123

which implies: ∂n0

∂t
|t=0 ∼ ε4, and, hence, the O(ε−2) timescale.



Fast evolution: Why and When?

Our choice of the initial moment was special. Usually the
wave field was evolving due to nonlinear interactions for
quite a long time before the moment we choose as initial.

Therefore, J (1)
0123(0) cannot be prescribed arbitrarily, but is a

result of preceding evolution. With time the phases get
adjusted in such a way that fast evolution doesn’t occur.

However, if, for example, there is also a wind forcing which
varies on O(ε−2) scale or faster, then the phases do not
have time to get adjusted and the wave field undergoes
rapid evolution.

If the initial spectrum has been strongly perturbed and
significantly deviates from the the solutions of the classic
KE, then again a rapid adjustment is likely.



Examples

The wave field could be pushed out of "equilibrium" in many
different ways, e.g. by:

Rapid changes of wind;

Interaction of several systems of waves:
(i) Wind waves + swell
(ii) Interaction with obstacles, e.g. interaction between

incident and reflected waves;

Any sufficiently strong spatial inhomogeneities (bottom
features, currents, internal waves);

Falling/sinking of a body



How fast is "fast"?

When the perturbation is strong enough to result in the
"fast" evolution of wave field and how fast will be the "fast"
evolution?

To answer these questions a dedicated study of each
particular situation is required.

Depending on the specific circumstances the "fast"
evolution could be anything between O(ε−2) and O(ε−4).

Results of direct numerical simulation of two archetypical
situations (an abrupt increase of wind and interaction of
waves with swell) are presented in the second part of this
talk.
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