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Absorption of Sound by Vortex Filaments
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The effect of an acoustic wave packet falling onto a thin 3D filament of vorticity is identified and
analyzed. The wavelength of sound decreases to zero in a finite time in such a process. Therefore,
even if viscosity is small the wave packets will reach the scales of strong viscous dissipation and get
absorbed, transferring their energy to the thermal energy of the compressible vortex flow. The cross
section of the sound absorption by multiple vortex filaments having an arbitrary 3D shape is derived.
Applications to the theory of the second sound attenuation in Hell are discussed.

PACS numbers: 43.20.+g, 47.27.-i

The vortex-acoustic interaction is one of the basic
dynamical processes in compressible turbulent fluids.
Acoustic waves can modify or even destabilize vortices
[1-4]. In turn, the vortices can generate sound [5] and
scatter it via the refractive and diffractive effects [6—10].
It will be shown in this Letter that thin vortex filaments
can also absorb sound wave packets. Briefly, this effect
can be described as follows. The convective distortion
of acoustic wave fronts by the sheared velocity field pro-
duced by a vortex acts to turn wave packets more toward
the vortex and increase their wave numbers. If the vortex
is intense enough, then certain wave packets will approach
the vortex core along a spiral trajectory (see Figs. 1 and
2) with their wave numbers rapidly increasing. When the
wave numbers of such wave packets reach the viscous
scale they will dissipate, transferring their energy to the
internal energy of the vortex flow. Such a mechanism
of the sound absorption is important for understanding
the interaction of vortices and the high-frequency acoustic
component in turbulence. It may also appear useful for
explaining the second sound absorption by quantized vor-
tices in He11, a problem which needs a better theoretical
treatment. We will exploit the ray acoustics approach [9—
11], thereby focusing on the refractive effects and neglect-
ing the vortex-induced diffraction of sound. Equations for
acoustic rays in a moving weakly inhomogeneous medium
are:

i‘ = VkH, (1)
k= -V.H, )

where
H=owkx =clk| +v- Kk 3)

is the Hamiltonian function (frequency), r and k are the
coordinate and wave vector of the sound wave packet,
and v = v(r,t) and c; = (r,t) are the vortex produced the
velocity field and the local speed of sound, respectively.
Let us consider a flow produced by an infinitely thin
straight filament of vorticity,
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where I is the total circulation of velocity; ¢, r, and z
are the polar coordinates. Assume also that the speed
of sound c; is constant everywhere except for the region
of the vortex core which we will not consider. In this
case, the Hamiltonian (3) is independent of z and ¢,
which results in conservation of the z component of
the momentum, P,, and the z component of the angular
momentum, M,
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M, = (k Xr), = kgr = const. (6)

Together with the energy (3) this makes three motion in-
tegrals of the sixth order Hamiltonian system (1) and (2).
Thus, taking into account that all the integrals (3), (5),
and (6) are in involution, we arrive at the conclusion that
the ray equations (1) and (2) are integrable. In fact, this
result is valid for any axially symmetric vortex profiles
v(r), cs(r), and, in particular, those having nonzero helic-
ity. We will not consider this more general case in this
Letter, leaving it for further consideration [4]. Substitut-
ing (4), (5), and (6) into (3), we express k2 as a function
of r:
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Expression (7) for the projection of the acoustic rays on
the plane (k,, r) contains very important information about
the dynamics of the sound wave packets. An example
of the phase portrait of the system is shown in Fig. 3.
When k, turns into zero the wave packet experiences a
reflection. Approaching r = 0 means falling of the wave
packet onto the vortex filament. When r approaches zero,
|k,| tends to infinity. Therefore, during the falling onto
the vortex the wave packet will inevitably reach the small
scales of viscous dissipation and get absorbed transferring
its energy to the thermal energy of the mean flow. As
seen in Fig. 3, an acoustic ray approaching the vortex
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FIG. 1. Two three dimensional trajectories of an acoustic
wave packet in the velocity field of a straight vortex filament
corresponding to the wave packet’s falling onto the vortex
and to an infinite motion of the wave packet. The vorticity
of the filament is concentrated on the line r = (64,64,7z).
The values of the speed of sound and the circulation are
¢, =1 and T'/27 = 100. Initial value of the wave number
is ko = (1,0,0.3); the initial position is ry = (0,70, 0) [criterion
(8) is satisfied] for the collapsing trajectory and ro = (0, 60,0)
[criterion (8) is not satisfied] for the infinite trajectory.

from infinity will collapse onto it if it can pass from r = %
to r = 0 without reflection. This takes place when the
minimal k2 in (7) is greater than zero. Such a condition
results in the following criterion for the collapse:

k* — kS

2 0
ki

27mrycy k* + k7
<2 =, 8
T 5 (8)

where k£~ is the absolute value of the wave vector at
infinity, k7 is its projection orthogonal to the z axis, and
r, is the impact parameter, r;, = —(k* X r*),/k*. Note
that I /27 r ¢, is the Mach number at r = r;. According
to the criterion (8) the collapse can occur even when
Ma(r,) < 1if & > k7, ie., if k2 > k2.

Let us show that the considered phenomenon is, in fact,
of the collapse type, i.e., that the wave packet falls on the
vortex in a finite time. Substituting (7), (5), and (6) into
Egs. (1) and (2) we arrive at

ke @ = Bt (R - PR
r=csy7 = C , O
19 yr? -«
where a =T'M,/2mwc,, B = M? + HTM,/mcZ, and
y = H/c;. The solution of Eq. (9) can be written in an

implicit form as

7r2—a

t = f [a2 _ .Br2 + (yz — pzz),4]1/2

dr. (10)

The expression on the right hand side (rhs) is an elliptic
integral, which can be written as a linear combination of
the standard elliptic integrals of the first and the second
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FIG. 2. The trajectories of the sound wave packet in the field
produced by a filamentary ring for the initial values of the wave
numbers for k, = 1, k0 = 0, the angular momentum M, =
0.3, and several different initial positions. Parameters of the
ring are the following: The center position is at r = (0,0,0),
the radius R = 1, the core radius a = 0.001, the circulation
I' = 27, and the speed of sound ¢; = 6.

kind [12]. Near the collapse point one can retain only
the leading order in the expansion of the rhs of (10) with
respect to small r. This gives

r

2wt — 1)’ an

r= C.V(to - t)! ¢ =

o M.
k, = —— ky = ———o .
c2(t — 19)? ¢ et — 1) U2

As seen from (11), the wave packet moves in the negative
radial direction with the speed of sound and makes an
infinite number of rotations around the vortex filaments
in a finite time. Further, from (12) we see that both the
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FIG. 3. Projection of the acoustic rays on the plane (k,,r)
calculated according to (7) for k. = 0.1, M, = —1, ¢, = 1,
I'/27 = 0.2, and several different values of H, equally spaced
in the interval from —2.985 to 8.359.
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azimuthal and the radial wave numbers turn into infinity
in a finite time, and that k, grows faster than k;. An
example of a collapsing acoustic ray is shown in Fig. 1.
One can see that quite a small difference in the initial
position of the wave packet can result in qualitatively
different types of behavior. The physics behind the
collapse phenomenon is that the convective distortion
turns the acoustic wave front more toward the vortex. If
the size of the vortex core is finite then the ray equations
do not possess collapsing solutions. Nevertheless, in the
case of thin vortices the wave packet can make many
loops around and reach the scales of viscous dissipation
before entering the vortex core.

What is remarkable is that the approximation of ray
acoustics can remain valid up to the collapse time in spite
of approaching the steep gradients of the velocity field.
For this, the sound wavelength must remain smaller than
the current radius of the spiral, (k2r?)min > 1, or, taking
into account (3), (4), and (6),

> 1.

M, )2 _ 2Ky (13)
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Thus, the ray acoustics is valid at the solutions corre-
sponding to the collapse if the vortex circulation is large
enough, I' > 7c,/2k2r,.

A prototype of the collapse in the 2D case has been
found by Salant [10], who has shown that certain acous-
tic rays approach the point vortex along spirals. We have
found and analyzed above three dimensional collapsing
solutions. Now we suggest a hypothesis that the collaps-
ing rays exist for any 3D shape of the vortex filament.
Obviously, we cannot integrate the ray equations to prove
this statement, because generally we lose all three in-
tegrals of motion (3), (5) and (6). Nevertheless, if the
speed of sound in the medium is greater than the speed
of the parts of the nonstationary filament then the wave
packet can approach the filament quite closely without
any significant deflection in its trajectory. But close to
the filament the velocity field is such that the effects of
the filament’s curvature and nonstationarity are unimpor-
tant. Therefore, after approaching the filament the wave
packet enters into the “self-similar” stage of its evolution
and falls onto the filament provided that the criterion (8)
is satisfied.

To illustrate this point we performed a numerical
computation of the motion equations (1) and (2) for the
wave packets moving in the velocity field of a filamentary
vortex ring having the following structure [13]:
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where

¥ =~ + KO — EW),
A= (r2 = r)/(r2 + ). 15)

r12,2 =272 + (r ¥ R)?,

K and E are the complete elliptic integrals of the first and
the second kind [12], vo is the velocity of translation of
the ring, vo = (I'/47R)[In(8R/a) — 1/4], R is the radius
of the ring, and a is the core radius.

The result of numerical integration of the ray equations
for different initial positions of the wave packet is shown
in Fig. 2. Here we have chosen vg = 4.36859 (I'/2m =
1, R/a = 1000) and ¢; = 6 to consider a case which
is formally beyond the limits of applicability of the
proof given above (i.e., ¢; > vo). We see that certain
trajectories indeed collapse onto the vortex ring. Zooming
on the collapse regions gives exactly the same spiral
structure as in the case of the straight filament shown in
Fig. 1. We have considered also the case c¢; > vo and
found that the acoustic rays have simpler structure in this
case: The wave packets move along nearly straight lines
until they approach quite close to the filament.

In Fig. 4 we show a typical behavior of the absolute
value of the wave vector of the collapsing wave packet.
We see that the most dramatic increase of the wave
number takes place during a very short period 3.41 <
t < 3.455 which follows after a long period of gradual
evolution. Obviously, after approaching quite close to
the collapsing point the numerical method breaks down,
which explains the irregular oscillations developing after
t = 3.455 and a subsequent drop in |k]|.

Criterion of the collapse (8) allows us to find the cross
section for sound absorption by vortex filaments. Indeed,
every wave packet having the impact parameter r, which
satisfies condition (8) will fall onto the vortex and get
absorbed due to the great increase in |k|. Therefore, each
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FIG. 4. The typical evolution of the absolute value of the
wave vector during the collapse of the sound ray onto the ring.
The evolution for ¢ < 3.41 is very gradual and does not possess
any peculiarities.
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element of the vortex filament produces a nontransparent
window, which width Ar,, according to (8), is equal to
2T'/arc,. Integrating over all the length elements of a
filament, and summing over all the vortex filaments in
the volume with 1 cm? base, we obtain the following
expression for the cross section of the sound absorption:

. fo,-sina,-(l)dl, (16)
i JL

mCy

where «;(l) is the angle between the direction of incidence
of the sound wave and the direction of the filament
number { at the point 1 on this filament.

Finally, the above discussed mechanism of acoustic
wave absorption by vortices may be very important in the
hydrodynamics of liquid He 11 where vortex filaments are
believed to be elementary structures of vortex excitations.
In fact, second sound absorption by filaments is used
in experiments on liquid helium as a diagnostics of
intensity of vortex excitations in the system [14]. To
date, no satisfactory theory has been proposed for the
sound attenuation, and the cross section of the absorption
is found empirically [15]. To apply the results of this
paper to the second sound absorption by vortices we need
to reformulate the problem in terms of two component
hydrodynamics of liquid helium and take into account
the dispersion which is proportional to #. The latter is
important because it determines the actual size of the
vortex core and affects the acoustic component via a
change of its group velocity.
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