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ABSTRACT

Weak turbulence of shear-Alfve´n waves is considered in the limit of strongly anisotropic pulsations that are
elongated along the external magnetic field. The kinetic equation thus derived agrees with the Galtier et al.
formulation of the full three-dimensional helical case when taking the proper limit. This new approach allows
for significant simplification, and, as a result, the applicability conditions for the weak turbulence theory are now
more transparent. It thus provides an attractive theoretical framework for describing anisotropic MHD turbulence
in astrophysical contexts where a strong magnetic field is present and for which shear-Alfve´n waves are important.

Subject headings: ISM: general — MHD — turbulence — waves

1. INTRODUCTION

Iroshnikov (1963) and Kraichnan (1965) (hereafter IK) proposed independently a phenomenology for incompressible, homo-
geneous, isotropic MHD turbulence based on three-wave processes of interacting and counterpropagating Alfve´n waves embedded
in a local mean magnetic field. The main differences with hydrodynamic turbulence were a slowing down of the energy transfer
to small scales and a scaling for the energy spectrum. While in hydrodynamic turbulence, the Kolmogorov energy�3/2 �5/3k k
spectrum prediction is well supported by many experimental and numerical observations (Frisch 1995), in magnetized flows there
is still a debate about the predicted scaling either in the absence of a uniform magnetic fieldb0 (Politano, Pouquet, & Sulem 1995;
Biskamp & Müller 2000) or in the anisotropic case (Cho & Vishniac 2000; Maron & Goldreich 2001). Indeed, the effect of Alfve´n
waves on the dynamics is still a subject of discussion (Biskamp 2000), e.g., for the solar wind or the interstellar medium (ISM).
Interstellar scintillation is interpreted as the scattering of radio waves by electron density fluctuations in the ionized ISM whose
turbulent power-law spectrum extends over many decades (Amstrong, Rickett, & Spangler 1995). The anisotropic scattering of
radio waves (Frail et al. 1994) suggests that such fluctuations are preferentially perpendicular tob0, which is often much greater
than the fluctuating part (Spangler 1999), and that therefore a theory of interstellar turbulence should be built on anisotropic MHD.
Moreover, observational data analyses of the Jovian magnetosphere (Saur et al. 2001) show that the Alfve´n time is often (much)
smaller than the nonlinear transfer time, which strongly suggests that weak Alfve´nic turbulence is a plausible theory for astrophysical
flows in an appropriate range of scales.

As is well known, the presence of a large-scale magnetic field leads to bidimensionalization of the turbulence, leading to slower
transfer alongb0. This can be seen from numerical simulations of incompressible (Montgomery & Turner 1981; Shebalin, Matthaeus,
& Montgomery 1983; Oughton, Priest, & Matthaeus 1994; Ng & Bhattacharjee 1996; Milano et al. 2001), reduced (Kinney &
McWilliams 1998), and compressible MHD (Oughton, Matthaeus, & Ghosh 1998; Mac Low 1999). If this anisotropy is taken into
account in the IK dimensional analysis, a energy spectrum is obtained, where “⊥” denotes the direction perpendicular tob0

�2k⊥
(Ng & Bhattacharjee 1997). Goldreich & Sridhar (1997) predicted this result as well, but they call this regime intermediate
turbulence. Recently, it was shown (Galtier et al. 2000) that the energy spectrum is actually an exact finite flux Kolmogorov�2k⊥
solution of the weak wave turbulence kinetic equations at the level of three-wave interactions. When the four-wave interactions
are dominant, the predicted energy spectrum is (Goldreich & Sridhar 1995). For strong anisotropic MHD turbulence, there�7/3k⊥
is still a debate in the absence of a rigorous theory; either (Sridhar & Goldreich 1994) or (Nakayama 2001) is predicted,�5/3 �3/2k k⊥ ⊥
using the ad hoc EDQNM closure or the Lagrangian DIA approximation.

In this Letter, we address a different but related question: we wish to considerfirst the physical limit corresponding to having
only shear-Alfvén waves in the fluid, andthen take the limiting case of weak turbulence of that ensemble of interacting waves.
Our motivation stems from the fact that the complexity in the algebra of deriving the kinetic equations for the eight correlators
involved in the full case of weak MHD turbulence may hinder one’s understanding of the underlying physics. Such a complexity
makes the general case harder to use and analyze, and to establish conditions for its applicability. On the other hand, the kinetic
equations are easier to analyze in the limit of nearly bidimensional turbulence, . We are able to show here that making ank K kk ⊥
assumption about strong anisotropy ( ) in theoriginal MHD equations allows for a reliable control of the assumptions madek K kk ⊥
during the derivation and results in transparency of the applicability conditions. The latter point is especially important because
of the active debate around the role of three-wave versus four-wave processes (Goldreich & Sridhar 1995; Ng & Bhattacharjee
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1996; Galtier et al. 2000; Nazarenko, Newell, & Galtier 2001). The resulting kinetic equation is simple, and it provides an attractive
theoretical framework for applying anisotropic MHD turbulence to astrophysics.

2. DERIVATION OF THE KINETIC EQUATION

To describe Alfve´n waves, let us introduce “perturbed” Elsa¨sser variables , where is a strongs ˆez p v � s(b � b ) b p b e0 0 0 k

external magnetic field (with ), is a polarization factor indicating the wave propagation direction, ande is a smallˆFe F p 1 s p �1k

parameter measuring the intensity of the wave turbulence. Units are such that thev andb are the fluid and Alfve´n velocities. The
inviscid three-dimensional incompressible MHD equations written in terms of the “perturbed” Elsa¨sser variables are

s �s s(� � sb � )z p �e� z z � � P , (1)t 0 k j x m j x ∗m j

where is the total pressure and is the derivative along . Fourier transforming equation (1) and separating the fast and slowˆP � e∗ k k

time dependencies, we have (Galtier et al. 2000)

s �s s i(�sq �sq �sq )tk k L� a (k) p �iek P a (k)a (L)e d d , (2)t j m jn � m n k,kL kL

where , , , and is the projection operators s i(k7x�sq t) 2kd p dkdL d p d(k � k � L) z (x, t) p a (k, t)e dk P (k) p d � k k /k∫kL k,kL j j jn jn j n

which ensures incompressibility; the Alfve´n waves frequency is . We now simplify equation (2) assumingq(k) p b 7 k p b k0 0 k

the turbulence to be strongly anisotropic, i.e., with , as expected in the presence of a strongb0. In this Letter, we will onlyk K kk ⊥
be concerned about the shear-Alfve´n waves that, in this case, are described by the transverse fields . The divergence-s s sa p (a , a )⊥ 1 2

free condition allows one to express in terms of as . Let , and neglects s s s s s s sa a a p �(k /k )a � (k /k )a ≈ �(k /k )a a p a2 1 2 1 2 1 k 2 k 1 2 1 1

terms with factors on the right-hand side of equation (2) and obtainkk

k2s �s s �2isb k t0 k� a (k) p �ie (k · L )(k � k) a (k)a (L)e d d , (3)t � ⊥ ⊥ k k,kL kL2k L k2 2 ⊥

using in the exponential term. Note that the integration in this equation is still over the three-dimensional vectorsk p k � Lk k k

andL and that depends on all three of the wavenumber components. Let us introduce the wave turbulence spectra as�s sk a q (k)
, where the averaging is taken over an initial ensemble. Spatial homogeneity means space

′s s ′ s ′ ′Aa (k)a (k )S p q (k)d(k � k )d(s � s )
averaging is equivalent. Further, because of the linear dynamics, the initial ensemble evolves to a state for which the random phase
approximation holds. Here, as usual, appears due to the turbulence homogeneity and is due to the fast decorrelation′ ′d(k � k ) d(s � s )
of the oppositely propagating waves. Following standard weak turbulence approach (Benney & Newell 1969), we write successively
equations for the second- and third-order moments:

k2s s ′ s ′ �s s s ′ �2isb k t0 k� Aa (k)a (k )S p � q (k)d(k � k ) p �ie (k · L )(k � k) Aa (k)a (L)a (k )Se d dt t � ⊥ ⊥ k k,kL kL2k L k2 2 ⊥

′k2 ′ ′ �s s s �2isb k t0 k�ie (k · L )(k � k) Aa (k)a (L)a (k)Se d d , (4)′� ⊥ ⊥ k k ,kL kL′2k L k2 2 ⊥

k2�s s ′ s ′′ s �s s ′ s ′′ 2isb k t0 k� Aa (k)a (k )a (k )S p �ie (k · L )(k � k) Aa (k)a (L)a (k )a (k )Se d dt � ⊥ ⊥ k k,kL kL2k L k2 2 ⊥

′k2 ′ ′ �s s �s s ′′ �2isb k t0 k�ie (k · L )(k � k) Aa (k)a (L)a (k)a (k )Se d d′� ⊥ ⊥ k k ,kL kL′2k L k2 2 ⊥

′′k2 ′′ ′′ �s s �s s ′ �2isb k t0 k�ie (k · L )(k � k) Aa (k)a (L)a (k)a (k )Se d d . (5)′′� ⊥ ⊥ k k ,kL kL′′2k L k2 2 ⊥

The fourth-order moment above decomposes into the sum of a triple product of second-order moments and a fourth-order cumulant.
The latter does not contribute to long time behavior. Second-order moments that involve amplitudes with different values ofs are
zero because of the independence of phases of such amplitudes. Therefore, the first term in the above equation is zero, and both
the second and the third terms consist of only one combination of the second-order moments each. Let us integrate the equation
for the third-order moments over a time periodT, which is much greater than the linear period but considerably1/q p 1/(b k )0 k

smaller than (characteristic time of the three-wave processes), i.e., . Then, one can neglect2 21/(e b k ) 1/(b k ) K T K 1/(e b k )0 ⊥ 0 k 0 ⊥
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the slow time dependence of the amplitudes during the integration, which givessa

′k2�s s ′ s ′′ ′ ′′ ′ �s s ′′Aa (k)a (k )a (k )S p �ied (k · k )(k � k) q (k)q (k )′ ′′kk k ⊥ ⊥ k′′ ′2{ k k k2 2 ⊥

′′k2 ′′ ′ ′′ �s s ′� (k · k )(k � k) q (k)q (k ) D(2b sk ), (6)⊥ ⊥ k 0 k′ ′′2 }k k k2 2 ⊥

where . Substitution of equation (6) into equation (4) givest�T
D(x) p exp (ixt)dt p exp (ixt) [exp (ixT ) � 1] /(ix)∫t

k L k2 2 2s 2 2 2 s s� q (k) p �e (k · L ) (k � k ) q (k) � q (L)t � ⊥ ⊥ ⊥ ⊥ k [ ]2 2 2 2k k L k L L k⊥ 2 2 2 ⊥ 2 ⊥

�s#q (k){D(2b sk ) exp (�2ib sk t) � D(�2b sk ) exp (2ib sk t)} d d . (7)0 k 0 k 0 k 0 k k,kL kL

Here the first and second terms in the braces correspond to the first and second terms on the right-hand side of equation (4),
respectively. The large time behavior of the kinetic equation is given by the Riemann-Lebesgue lemma: for , we haveT r ��

, where is the principal value of the integral. Because of the condition onT, one can onlyexp (�ixt)D(x) r pd(x) � iP(1/x) P
take the limit ifT r �

2k /k k e . (8)k ⊥

This is the first condition of applicability of the weak turbulence description, a condition that was already discussed in Galtier et
al. (2000). This condition can be satisfied at any finite wavenumber for sufficiently weak turbulence. On the other hand, for any
turbulence intensitye, there always exists a region of small in which the condition is violated; this corresponds to thenonuniformkk

validity of the kinetic equation. Such behavior for general three- and four-wave interactions is discussed in Newell, Nazarenko,
& Biven (2001). Another applicability condition is that the spectrum must change slowly when crossing the wavenumber cone
(8): the spectrum must stay approximately constant as a function of in the range at fixed . Indeed,s 2 2q (k) k �e k K k K e k kk ⊥ k ⊥ ⊥
the function can only be treated as a delta function if the rest of the integrand changes more slowly than , the latterD(x) D(x)
having a characteristic width . As was discussed in Galtier et al. (2000), such an absence of “spikes” in the2w ∼ 1/T 1 e b k0 ⊥
spectrum corresponds to an absence of long spatial correlations along the external magnetic field. Assuming that both applicability
conditions are satisfied, using the Riemann-Lebesgue lemma and the symmetry of the equation for the spectrum, we obtain

2 2 2pe k (k · L ) (k � k) k L2 ⊥ ⊥ k 2 2s �s s s� q (k) p q (k) q (L) � q (k) d(k )d d . (9)t � k k,kL kL[ ]2 2 2 2b k L k L k k L0 ⊥ 2 2 2 ⊥ 2 ⊥

The energy spectrum of the shear-Alfve´n waves is the sum of the perpendicular components of the energy tensor or, usingse (k)
the divergence-free condition, ; it obeys the following kinetic equation:s 2 2 se (k) p (k /k )q (k)⊥ 2

2 2 2pe (k · L ) (k � k)⊥ ⊥ ks �s s s[ ]� e (k) p e (k) e (L) � e (k) d(k )d d . (10)t � k k,kL kL2 2 2b k L k0 ⊥ ⊥ ⊥

Equation (10), our main result, coincides with equation (46) of Galtier et al. (2000) obtained from the general kinetic equations
of weak Alfvénic turbulence in the limit . This shows that statistical averaging and the limit commute. Thek K k k /k r 0k ⊥ k ⊥
presence of in the kinetic equation (10) is the consequence of the three-wave frequency resonance condition. It means thatd(k )k

is only an external parameter, and thus there is no energy exchange between modes with different -values, which leads tok kk k

even stronger anisotropy . Physically, one can view such a process as a Bragg-like scattering of finite waves off a two-k K k kk ⊥ k

dimensional turbulent “grating” (i.e., modes). One of the well-known consequences of the three-wave process for Alfve´nk p 0k

wave turbulence in the case is the energy spectrum (see also Bhattacharjee & Ng 2001 for a model of weak turbulence);�2k K k kk ⊥ ⊥
it is an exact constant-flux solution of equation (10); moreover, such stationary constant-flux solutions may have their exponents
anywhere in the range from�1 to �3 depending on the degree of asymmetry of forcing of the waves (Galtier et al.s p �1
2000). Such asymmetric wave pumping is very common in astrophysics (e.g., there are more Alfve´n waves traveling away from
the Sun than toward it in the solar wind; Matthaeus, Goldstein, & Roberts 1990).

3. DISCUSSION

This simple derivation of the weak turbulence kinetic equation allows us to appreciate the conditions ( and the absence2k /k k ek ⊥
of long-range correlations in theb0 direction) under which the theory is valid. The first one can always be checked on the basis
of the solution of the kinetic equation. The second condition cannot be checked on the basis of the weak turbulence theory itself
because this theory is invalid near and, therefore, cannot be used to see if any spikes are present in this region or not.k p 0k

However, at present it seems unlikely that any strong turbulence mechanism could lead to long parallel correlations and to a
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condensation of turbulence near . Future numerical simulations and observations might shed more light on this issue. Notek p 0k

also that an analysis of data from the Jovian magnetosphere (Kivelson et al. 1997) may provide observational support for the
present theory (Saur et al. 2001).
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