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Abstract

The resonant transformation of a Gaussian pulse of electromagnetic radiation into a Langmuir wave in an inhomogeneous
plasma is studied. It is shown that if the pulse duration is smaller than the Langmuir wave (plasmon) lifetime, then substantial
changes in the Langmuir field profile occur. Namely, the width of this profile becomes greater and its maximum is smaller
compared to the correspondent values for the case of long pulses and the same value of the plasmon lifetime. This fact
may be useful for experimental measurements of the electron collision frequency. Indirectly, the collision frequency can be
obtained by measuring the intensity of the the second harmonic of the postpulse emission, the expression for which in terms
of the Langmuir field is given in this Letter. The limits of validity of linear theory due to plasma profile distortion and

wavebreaking are discussed.

The transformation of an electromagnetic wave into
Langmuir oscillations in an inhomogeneous plasma
(resonant absorption) has been the subject of numer-
ous studies (see Refs. [1,2] and references therein).
The physical pattern of the resonant absorption can be
summarized as follows. The P-polarized electromag-
netic wave, incident on the plasma at an angle § with
respect to the density gradient, has a reflection point

-at n=ngcosd, wy(n:) = wo. The wave tunnels to the
conversion point, n = n,, and resonantly drives Lang-
muir oscillations with frequency @ = wp. Within the
linear theory, the plasma wave amplitude is limited
by collisional damping or convection from the reso-
nant zone. The amplitude of the Langmuir field can
be much larger than the incident-wave amplitude and
have the form of a resonant distribution with a small
width (determined, again, by the convection and/or
collisions).

The situation can be different for short electromag-
netic pulses. The different frequency components con-
tained in the pulse have their conversion points at dif-
ferent locations. As a result, the width of the resonance
and the structure of the field within the resonant zone
will depend on pulse duration as well. The goal of the
present Letter is to study this effect. We will examine
the phenomenon of short-pulse resonant absorption in
the linear approximation. We will also show how non-
linear processes, such as second harmonic generation,
are modified by the finite duration of the pulse.

The problem we address is becoming very impor-
tant in applications. Advances in laser pulse compres-
sion make superhigh laser intensities possible in pulses
only a few hundred light wavelengths wide [3]. For
experiments with such pulses, resonant absorption is
believed to be the major process in laser-plasma in-
teractions. Both finite pulse duration and nonlinear ef-
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fects are important in this process. Even shorter pulses,
in terms of the number of wave periods, are available
in the microwave frequency range. For example, in the
new diagnostic method of plasma reflectometry, the
pulse duration can be of the order of ten wave periods
[4]. We will show that nonlinear processes can pro-
vide valuable information about the plasma, such as
frequency of electron collisions.

Let us consider an electromagnetic wave incident
on the plasma layer at an angle #. The longitudinal
electric field generated by the monochromatic incident
wave with amplitude Ey,, is [1,2]

isin @ Eo,Aexp(—iwpt)
EZ'. = 2 2 . H] (1)
Z/L =1+ wl/wi+iv/w

where v is the frequency of electron collisions and L
is the plasma density length scale. For simplicity, we
consider the situation where the Langmuir wave am-
plitude is limited by collisions. The factor A is propor-
tional to the magnetic field amplitude of the incident
wave at the resonant point. It describes the tunneling
of the electromagnetic wave to the resonant point and
can be expressed in terms of Airy functions [5]. A rea-
sonably good approximation [ 1,2] is given by A(g) =
2.3\/Z]exp(—_%q2), where g = (koL)**sin’8; ko =
wo/c. The function A(g) has a maximum at g = 0.64
with width Ag ~ g, so that sin® 8 ~ 0.64(koL) /3,
[Al = 1.2

When the convection of Langmuir waves dominates
over dissipation, one may still use (1) for estimates
with v replaced by vefr = w,(rq/L)*> [2-5]. Here-
after, we will consider only the case v > veg, however,
most of our results are valid also when the opposite
inequality holds if » replaced by wess.

Suppose now that the signal e.m. wave has the form
of a Gaussian pulse,

Esignal = Ey exp(—iwot) = Agexp( —12/27'2 — iwpt).

(2)

Since our problem is so far linear, we can use (1) for
each Fourier component of the pulse (2) and integrate
over all the harmonics according to the superposition
principle. Note that different harmonics will have dif-
ferent resonant points, and this will result in a widen-
ing of the resonance with corresponding reduction in
the peak amplitude.

Taking into account that the Fourier transform of
(2) is

E, = Aorexp[—%(w — wp) 27,

we arrive at the expression for the electric field of the
Langmuir oscillations,

E, = /EZ,,, dw =1Ap7sin 8

dw. (3)

/Aexp[;iwt - %(w — wp)?r]
Z/L—1+ @}/0? +iv/w

Suppose that both v and 7! are small compared to

wg. Then, the integrand of (3) will have a highly pro-
nounced resonance at w = wq, so that we can disre-
gard the frequency dependence of the factor A (which
is a smooth function of w) and simply take its value
at the conversion point. By straightforward algebraic
manipulations we can reduce (3) to the form

E. = Yimr' 2wyt Agsin 0 A(wo)

x exp(—1* /27% — iwot) Z(n), (4)
where
7 A2) dA
Z(x) =172 / %_2__, (5)
A—X
and

_ zwoT it n ivr
L Vi a?

As usual for the initial value problems, the integral (5)
must be taken along a contour below the pole of the
integrand. The exponential factor in (4) mimics the
time slope of the signal pulse. However, the original
shape is distorted in E, due to the time dependence of
Z(m) through . We point out that the function Z(7)
coincides with the plasma dispersion function which
appears in the theory of plasma stability [6].

The finite pulse duration (or finite width of the fre-
quency spectrum) affects resonant absorption in two
different ways. First, the frequency variation changes
the tunneling conditions (i.e., changes the factor A).
On the other hand, for a significant change of A, one
must have Aw ~ w, i.e., the duration 7 must be as
small as the wave period (keeping in mind that 7 ~

(6)
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Fig. 1. The spatial profiles of the longitudinal electric field E.
for several different values of the pulse duration 7 at time ¢ = 0.
The carrier wave frequency and the frequency of collisions are
w =100 and » = 1, respectively.

1/Aw and the wave period T = 27/w). This effect
is not present in (4) because we assumed w7 > 1.
More important is the second effect, namely the dis-
placement of the conversion point and the consequent
change of the pulse structure. One can see from (1)
that this effect comes into play at Aw/w = 1/wT ~
v/iw < 1.

Let us analyze the long-pulse limit, » 7 > 1. Using
the asymptotic expansion of Z for large arguments,
Z(n) = —1/7n [6], we artive at

isin® Aexp(—12/27% — iwgt)

z/L+iv/wo D

Ez =~ Ag
Observe that (7) could be obtained by substitution of
(2) into (1) (we measure z such that @, (0) = wp).
Therefore, the long pulses may be treated as quasi-
monochromatic, and one can use directly the results
of Refs. {1,2,5]. The maximum value of the electric
field is located at z = O where

Enax ~ Eyw/v. (8)
The width of the electric field peak is

Az ~ Ly/w. (9)

In Fig. 1 we present spatial profiles of E, for several
different v7 at £ = 0. One can see that the maximum of
the field is located at z = 0, and the profile is symmet-
ric. At the conversion point, z = 0, the argument 7 is
purely imaginary and, therefore, we use the following
expression for the Z-function,

1.5 T

Ez

nustou=1.0
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Fig. 2. The the evolution of the longitudinal electric field E; at
the conversion point z = 0 for several pulses of different duration
and collision frequency » = 1.

Z(n) ~inr'Pexp(—p?) — 2y ~ in'/2. (10)

According to this expression, in the case ¥ 7 < 1, the
Langmuir electric field tends to a value independent
of v and is wo7 times greater than the amplitude of
the incident wave, Eg. This result is natural from the
physical point of view. For short pulses, v 7 < 1, the
spectral width Sw ~ 1/7 exceeds the width of the
resonant zone, Aw ~ v, and only a small fraction,
v/6w ~ vt, of the pulse field drives the Langmuir
wave. Therefore, Ey in (8) must be replaced by Ey v,
so that

E. max = EpwoT. (11)

For the same reason, the width of the electric field
peak is now broader than in the case v 7 >> 1,

Az ~ L/wr. (12)

In Fig. 2 we show the evolution of E; at the conversion
point, z = 0, for several pulses of different duration,
as calculated from (4). One can see that, due to small
damping, » 7 < 1, Langmuir waves continue to exist
long after the pulse duration.

It is remarkable that the total energy absorption in
the process of the linear transformation,

2
sz/%;'?dzdt, (13)

is independent of », similar to the case of a monochro-
matic wave. Indeed, each Fourier component of the
electric field contributes to @ independently of all
other harmonics, as seen from
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2
_v/l dzdr=v /"”‘ddw (14)

Contribution of individual harmonics is »-independent
and so is the integral over all the harmonics contribut-
ing to Q.

Thus, the total efficiency of the energy absorption
is independent of the pulse duration. In contrast, the
pulse shortening essentially affects various nonlinear
processes, e.g., second harmonic generation accom-
panying the resonant transformation of the electro-
magnetic wave. Indeed, due to the nonlinearity of the
Maxwell equations coupled with the plasma equations
and the high intensity of the electromagnetic wave,
one will observe a strong emission at w ~ 2wq [7].
The intensity of this emission is given by the follow-
ing expression [7],

® 2
/ F(z)exp(—ikyz) dz

—00

) (15)

_c
B 3277'k%

where the “source” of the second harmonics has the
form

ie d d
—sin6 E2 + E, ,
2mcwdz<lcsm +EdE)

4(()2
2 3 .2
k; = 2 (3 —sin”8).

The first term in F can be interpreted as the creation
of a 2w-quantum via the merging of two Langmuir
waves (plasmons), and the second term as the cre-
ation of such a quantum through the merging of the
plasmon and the electromagnetic wave. In the case
of long pulses, the second term will dominate. For
short pulses, the second harmonic will be weaker due
to the drop in the electric field. In this case, the sec-
ond term will vanish after the pulse terminates. On
the other hand, second harmonic generation via the
two-plasmon merging will persist for a longer time,
because of the finite life time of the Langmuir waves
after the pulse termination. Thus, detection of second
harmonic radiation can provide a direct measurement
of plasmon damping, and whatever process is respon-
stble for it (i.e., collisions, wavebreaking, etc.).
Similar behavior is manifested in electromagnetic
radiation with the frequency of the incident light - the
process inverse to the resonance transformation. For

short pulses this process lasts until the plasmons decay,
so that the monitoring of this “postpulse” radiation
also can provide a measurement of the Langmuir wave
damping near the resonant layer.

To this point, we have discussed the effect of the
pulse finiteness in time. The pulse may also have some
transverse spatial structure, for example, “hot spots”.
Formally, it would mean that the pulse is composed
of harmonics with the same frequencies, but different
wavenumbers or angles of incidence, #. One can see
from (1) that the transverse dependence will modify
the field structure only through A, which is depen-
dent on g(k, 8). Such a dependence is very weak, and,
therefore, the resonant absorption is much less sensi-
tive to spatial variations than to temporal ones.

There are some restrictions on the applicability of
the linear theory of resonant absorption just presented.
The resonantly excited Langmuir wave creates strong
ponderomotive forces, deforming the plasma density
profile near the resonance point. When this density
modification, dn, becomes comparable with the den-
sity variation of the plasma profile on the width of the
resonance, Az ~ Lv/e, then the linear theory breaks
down. In this case, scale splitting and transition to tur-
bulence occur [8,9]. In the long-pulse case, we have
the following criterion of applicability of the linear
theory [10],
on E? N E} ' Az v

—_— _—~ —

n 8mwnT ~ 8mnT v? L w

For short pulses, the density depletion is determined
by the ion inertia rather than the pressure balance. As
a result, the density variation is smaller than E12 /8mnT
by the factor of (cs7)2/(Az)? if ¢, < Az, where ¢
is the speed of sound. Also, the density variation drops
due to the decrease of the maximum electric field, see
(11). For such a situation

o B
n ~ 167nT
The linear theory is applicable in this case up to

(w )“T ‘

E} ML* 1
167rnT

m r_g (wr)?’
where rp is the Debye radius. The range of validity
rapidly expands with decrease of 7.

Other factors, which limit applicability of the linear
theory are electron nonlinearities and the Langmuir
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wavebreaking. If high intensity pulsed laser radiation
is used, then wavebreaking can occur faster than the
nonlinear profile deformation by the radiative force.
The time of wavebreaking 7, is given by the following
estimate [11],

Tw ~\/ Lm/eE;.

One can sce that for short pulses, the wavebreaking
time increases due to the drop in the electric field
[9]. If the pulse duration is smaller than 7, the linear
theory can be used for the description of the resonant
absorption process (provided that the nonlinear profile
deformation does not occur). Note, however, that the
subsequent evolution of the Langmuir waves can be
essentially nonlinear.

Thus, both limitations, associated with the nonlin-
ear profile deformation and wavebreaking, are less re-
strictive in the case of short pulses; and the linear the-
ory, developed in this Letter, can be used for much
more powerful pulses, than in the long-pulse regime.

This work was supported by the Air Force Office
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(SVN and ACN) and grant LLNL-IUT no. 8264118
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