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For the theory of drift plasma and g-plane geophysical dynamics both large-scale vortex and small-scale wave components are
important: linear excitation and dissipation occur mainly at small scales, while concentration of the energy spectrum takes place
(through the inverse cascade) at large vortices. Based on the time and space separation of these scales averaged evolution equa-
tions are derived. The equation for the small scales describes the propagation of high-frequency quanta on the background of a
flow produced by large-scale vortices; this equation provides the conservation of the spectral density of the potential enstrophy of
small scales. The equation for the large-scale component is the Charney-Hasegawa—Mima equation with a source term having the
form of the ponderomotive force and providing the inverse energy cascade from small to large scales. A new computational
approach for the modeling of drift and f-plane turbulence is proposed on the basis of the equations obtained - the quantum in the

cell method.

1. One of the most widely used models for the de-
scription of drift turbulence in an inhomogeneous
magnetized plasma as well as Rossby wave turbu-
lence on the g-plane in geophysical hydrodynamics
is based on the Charney-Hasegawa-Mima equation

0 (AY-¥)-03, ¥+ (3, 0¥)3, ¥
—(3,A¥)0,¥=0. (1).

Here we use the dimensionless time ¢, coordinates x,
y and the stream function ¥= ¥(x, y, t); their mean-
ing in a wide variety of particular situations in plasma
physics and hydrodynamics is explained, e.g., in ref.
[1].

At present it is well recognized that large-scale vor-
tex motions play a very important role in physical
processes of practical significance, e.g., in anoma-
lous plasma transport across a magnetic field, in
global atmospheric and oceanic circulation. Concen-
tration of the turbulent spectrum at large scales is
usually attributed to the existence of an inverse en-
ergy cascade in 2D turbulent media. On the other
hand, the small-scale motions are also of great im-
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portance for the drift and Rossby wave turbulence
theory: both the excitation and the dissipation of tur-
bulent motion are most important at small scales, not
at large scales. Therefore, small-scale waves provide
(through the inverse energy cascade) the source for
large-scale motions, and, thus, determine their level.

A selfconsistent theory of the nonlinear evolution
of drift and Rossby wave systems has been devel-
oped in the weak turbulence limit, when the level of
excitation is so small that large-scale motions appear
to be a set of dispersive waves instead of vortices
[1,2]. In particular, the following saturation mech-
-anism of the level of turbulence at large scales has
been found: when reaching some threshold level
large-scale turbulence forces small-scale motions to
disappear (through the enhancing of the coefficient
of their diffusion in k-space from the source to the
domain of dissipation) and, hence, turns off the
source of large-scale motions.

The generic situation in experiments and nature is
that the width of the frequency spectra of drift and
Rossby wave turbulence is as large as the eigenfre-
quency of the linear waves. Then, large-scale tur-
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bulence is related with vortex motions of the me-
dium, not with dispersive waves, and weak
turbulence theory is not applicable. To consider the
problem of the formation of large-scale vortices from
a small-scale background, we can still use the time
and space separation between large and small scales.

The idea is that the small-scale turbulence may be
considered to consist of a number of high-frequency
quanta moving on the background of a mean flow
formed by the large-scale motions and acting on the
large scales by some pondermotive foree.

In some sense, such an approach is analogous to
the description of superfluid “He as a mixture of two
liquids (superfluid and normal components), which
is possible due to the presence in the spectrum of ex-
citations of two distinct parts - large-scale phonon
and small-scale roton components [3].

2. To obtain the equation for the evolution of the
large-scale component, let us Fourier transform eq.
(1) and average over the characteristic times of small
scales: -

—at(p2+1)<wp> _ipx<¥’p>

+ I [PbPl]P%(aUm ><5Upz>5(1’—1’1 —p2) dp, dp;

+ [ e, I 13 (P W >3k +h —p)

=0, ' (2)

where the Fourier images ¥,,, ¥, are the functions
of 2D wave vectors p,= (Dix, Diy), ki= (kir, ki) cor-
responding to the large and small scales; |p;| < | k|,
i,j=(0, 1, 2). The bracket { > means averaging over
the fast time of small scales, while the bracket [ ]
means the z-component of vector multiplication
[a, B]=a.b,—ab..

Taking into account that the second integral in eq.
(2) can be rewritten in the form

[ P14 19)2( By oWy >
= [ th PY kDY Bk Bz
where k=1(k,—k,), and performing an inverse

Fourier transformation on eq. (2) we get the follow-
ing equation for the evolution of large scales,
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where

A=A(r,t)= ij «dk

k2

B=B(r,t)= 2jm nedk,

ne=n(k,r,t)=4k?(1+k?)

X J‘ (Cra—kPorrviy exp(ip-r) (2('11))2’ 4

and ¥ = ¥ (r, t) is the stream function of large-scale
motions. Notice that eq. (3) involves only slow time
and space variations, the action of the small-scale
motions having the form of a pondermotive force
proportional to the density of high-frequency quanta
n(k).

3. To derive the evolution equation for the density
of high-frequency quanta, n(k), let us add the evo-'
lution equation for the Fourier image ¥, multiplied
by ¥, to the equation for ¥, multiplied by ¥;; as
a result we get

6,(Y’ka,)+1(a)%+w£,)5”k¥’k/+R=0 ) (5)
where
k, pl(k—p)>
o (B0 v
[¥,p] (K —p)*
+ T Wk/_p Wk) qu dp 5
and
wi=k/(1+k?) : (6)

is the eigenfrequency of the linear waves.

Let us suppose that the concentration of the tur-
bulence spectrum at large scales is high enough to
neglect the interactions of small scales among them-
selves in comparison with their interaction with large
scales. Then we can expand the expression under the
integral R in small |p|, |p| < |k].

Notice that in this case the small-scale motions can
be considered to be linear waves propagating on the
background of a weakly inhomogeneous flow pro-
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duced by the large-scale motions. Therefore, the cor-
relator of the small-scale field { %%, > is of an ap-
preciable value only for the the small values of k+ &’
which are comparable to or less than the character-
istic wave vector of large-scale motions. Taking into
account these arguments, let us expand the integrand
of Rin |p|, average eq. (5) over the fast time and
then expand it in k+k&’. After straightforward trans-
formations of the resulting equation we finally obtain

dw dw
(a,+ﬁa,—aak>nk=0, (7)
where
A ket (v k)K?
is the frequency of the quanta; the term
o (v, -k)k?
D =W (k,r’t)=ﬁ (9)

is the nonlinear correction owing to the motion of
the large-scale background with velocity

n=(0,%, -9,¥). (10)

It is worth to point out that eq. (5) describes the
conservation of the quantum density along the phase-
space trajectories

=00, k=-9.0. (11)

It is easy to show that the total number of quanta N,
N={ n, dkdr, coincides with the potential enstrophy
of small scales. This fact is in accordance with the
notion that potential enstrophy cannot be trans-
ferred from small scales to large scales in 2D
turbulence.

Instead of the enstrophy, the total energy of high-
frequency quanta, Es=[ (ni/k?) dkdr, is not con-
served: there exists an inverse energy cascade from
the small scales to the large scales. Meanwhile, the
set of equations (3), (7) provide conservation of the
total energy:

E=FE; +Es=const, (12)
where
E=i [ 192+ (Vo)) ar

is the energy of large-scale motions.
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For sufficiently small levels of large-scale turbu-
lence, ¥, pk? < 1, the set of equations (3), (7) can
be reduced to the nonlocal evolution equation for the
spectrum of weak turbulence derived in refs. [1,2].
In this case the quanta move in k-space along one-
dimensional curves wk?=const, so that their energy
has a form usual for the weak turbulence theory,
Es={ o,

4. Eq. (7) for the evolution of the quantum den-
sity in k—r space, n(k, r, t), bears resemblance to the
2D Vlasov equation for the plasma electron distri-
bution function f(», r, t) in velocity-coordinate
phase-space. This fact allows us to propose a nu-
merical method for the simulation of the drift wave-
vortex turbulence — the quantum in the cell method
(QIC), analogous to the particle in the cell method
(PIC) in plasma physics [4]. The state of the 2D
medium is characterized by the large-scale (vortex)
stream function ¥ (r, t,_,,») defined in the nodes of
a 2D r-grid at time ¢;_,,», and a large number 4" of
quanta (waves) each having a definite value of the
wave vector k;(¢;) and position #,(¢;), j=1, ..., & at
time ¢,. To obtain the function ¥, at the next time
step ¢, 1,2 one should calculate the grid functions 4 (r,
t;), B(r, t;) according to eq. (4) (compare, e.g., with
the calculations of the electron density, [ f(v, r, t)
dwp, or the mean velocity, [ f(», r, t) dp, in the PIC
method [4]). Then, the function # (r, t;4,,2) can
be obtained as the solution of eq. (3), e.g., by means
of the spectral code..

Afterwards, one should find the new values of the
wave vectors and the positions of the quanta using
egs. (11) for their trajectories with the velocity func-
tion » (7, t;41,2) (see (10)). Let us divide a square
grid cell in coordinate space by the diagonal from the
top left icon of the cell to the bottom right one, and
approximate the large-scale field ¥ (r, t,4,/,) in each
of the triangular cells by a linear function (one can
always plot the plane through the three points cor-
responding to the nodes of the grid ). Then, the large-
scale velocity v (r, t;,,,) inside these triangular cells
will have some constant value (see eq. (10)). Aslong
as the function ¥, is continuous at all the boundaries
of the triangular cells, the component of the velocity
field » normal to the boundary does not change when
crossing this boundary, while the parallel component
of v, changes (in the general case) by a finite value.
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The important fact is that eqgs. (11) for trajectories
of quanta can be integrated analytically under.under
such an approximation of large-scale vortex motion:
according to egs. (8), (6), (9)-(11) the velocities
of quanta ¥; and wave vectors k; are constant inside
the triangular cells (#; =const, icj =0), while the wave
vectors of quanta undergo some finite changes when
crossing the boundaries of these cells.

To find the values of such changes of icj let us first
suppose the boundary between the near triangular
cells to be of finite width d with a continuous paraliel
velocity u, profile inside (the normal velocity v |
is constant when crossing the boundary, see above),
and then pass to the limit d—0 .in the resulting
expressions for quantum trajectories in k-r space.

Suppose that a quantum is moving toward the
boundary parallel to the x-axis, so that v =v.(¥),
v, =const within the boundary layer (all the other
situations can be considered in the same way). Such
a form of the velocity profile implies conservation of
“energy”, w, and “x-momentum” of the quantum,
k, (w does not depend on time and the x-coordinate,
see €qs. (6), (8), (9)). Therefore, the Hamiltonian
equations (11) for quantum motion are integrable
- there exist two integrals of motion in the involu-
tion in 4D phase-space.

It is useful to consider the result of the integration
in the form of an expression for the parallel velocity
L. as a function of &k, (on the quantum trajectory)
resulting from egs. (6), (8), (9) and the conditions
w, k,, v, =const, namely,

_w/kx—l

v
vu——km'*'w/kx—ﬂky, (13)

ks

see fig. 1a. The value of &, that the quantum has at
a point y=y* within the boundary layer can be ob-
tained by solving eq. (13) with v =v . (3*) with
respect to k,, it is easy to see that this equation can
be rewritten as a cubic equation:

(vLy/kx)ki + (va+w/kx)k§ + (vLykx)ky
+(K2v +1-w/k,—wk,)=0. (14)

It is clear that this cubic equation has only one real
root if

|w_kxl<(%)3/2IvLykil ’ (15)

while in the opposite case it has either one real root
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Fig. 1. (a) Relation between the tangent component of the veloc-
ity and the normal component of the wave vector in the bound-
ary layer perpendicular to the y-axis (with v ,=2, k.=0.5,
w=1.5); (b)-(d) Phase trajectories of a quantum passing the
boundary layer (between the dashed lines) for different values
of the tangent velocity in the adjoining cells.
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or three real roots depending on the value of v .

Evidently, if condition (15) is satisfied then the
new value of the quantum wave vector can be found
as the only root of eq. (14) with the value of the x-
velocity in the adjoining cell (while k. is not
changed).

A more complex situation arises if condition (15)
is not satisfied: then for some values of v, in the cells
€q. (14) may have three roots. So, to define the final
value of k, we must find out how the trajectories be-
have inside the boundary layer. Consider, for ex-
ample, the case |w—k.|>(5)*?|v k3|, w>k,
v k>0, represented in figs. la-1d.

(1) Suppose first that the velocity vy, varies in the
boundary layer (between the dashed lines in figs. 1b—
1d) from the value v,, in the lower cell to the value
Uy in the upper cell as shown in fig. 1a. In this case
eq. (14) has three roots ki,, k;,, ks, ki,>ky,> k),
in the upper cell and only one root in the lower cell,
k1, see fig. 1b. Hence, a quantum approaching the
boundary may have one of two values of k,:k;, or
ks,. If the initial value of the wave vector corre-
sponds to the largest root (k;,) then according to figs.
la, 1b the quantum will cross the boundary with a
final value of k, corresponding to the only root of eq.
(14) in the lower cell (k% ). If the initial value of k,
corresponds to the smallest root (k;,) then the
boundary will reflect this quantum and it will move
back with a wave vector corresponding to the middle
root of eq. (14) in the upper cell (k,,).

(2) Let the x-velocity v, vary in the boundary
layer from some value v,, t0 v,4 (see figs. la, 1c).
Then eq. (14) has one root in the upper cell and three
roots in the lower cell. If the quantum approaches
from the upper cell (initial k, is equal to &, ») then
it will cross the boundary along the smallest root
(final &, is equal to k7, ), while if the quantum moves
from the lower cell (initial &, is equal to k3, ) it will
be reflected along the largest root in the lower cell
(final &, is equal to k3, ).
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(3) Ifthe parallel velocity profile varies from value
Uxz 10 1y3 then there are three roots of eq. (14) in
both the upper and the lower cells (see figs. 1a, 1d).
There is no reflection in this case: the smallest, mid-
dle and largest roots of eq. (14) in the upper cell, k, s
kay, ks,, are joined by trajectories with respectively
the smallest, middle and largest roots in the lower
cell, k4, k5, k3, (kiy—kiy, kay—ks,, ks~ kb)),

5. Notice that the quanta can cross several cells
during one time step, so the QIC method described
above seems to be very fast. Another advantage of
the QIC method is that there is no limitation on the
smallest scale of the turbulence, so we can simulta-
neously take account of dynamics of sufficiently dif-
ferent scales. '

In our next paper the QIC method will be applied
to the problem of excitation of large-scale drift and
Rossby vortices by a small-scale turbulent back-
ground and the modeling of nonlocal strong drift and
B-plane turbulence (cf. the nonlocal weak turbulence
theory developed in refs. [1,2]).

The area of applicability of the QIC method is not
restricted by the Charney-Hasegawa-Mima equa-
tion; it can be generalized to more complex models
of drift turbulence. A similar method can be devel-
oped also for any nonlinear medium where mainly
essentially separated scales interact; e.g. for nonlin-
ear optics based on the nonlinear Schrédinger equa-
tion [5]. )
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