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Abstract

A WKB method was recently used to extend rapid distortion theory (RDT) to initially inhomogeneous turbulence strained
by irrotational mean flows [S.V. Nazarenko, N. Kevlahan, B. Dubrulle, J. Fluid Mech. 390 (1999) 325]. This theory takes
into account the feedback of turbulence on the mean flow, and it was used by Nazarenko et al. to explain the effect of strain
reduction caused by turbulence observed by Andreotti et al. [B. Andreotti, S. Douady,Y. Couder, in: O. Boratav, A. Eden, A.
Erzan (Eds.), Turbulence Modeling and Vortex Dynamics, Proceedings of a Workshop held at Istanbul, Turkey, 2–6 September
1996, pp. 92–108]. In this paper, we develop a similar WKB RDT approach for shear flows. We restrict ourselves to problems
where the turbulence is small-scale with respect to the mean flow length-scale and turbulence vorticity is weak compared
to the mean shear. We show that the celebrated log-law of the wall exists as an exact analytical solution in our model if the
initial turbulence vorticity (debris of the near-wall vortices penetrating into the outer regions) is statistically homogeneous in
space and shortly correlated in time. We demonstrate that the main contribution to the shear stress comes from very small
turbulent scales which are close to the viscous cut-off and which are elongated in the stream-wise direction (streaks). We also
find that anisotropy of the initial turbulent vorticity changes the scaling of the shear stress, but leaves the log-law essentially
unchanged. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

There has been lively discussion in the literature over several years about whether near-wall turbulence has
complete similarity, the classical theory of von Karman [2] and Prandtl [3], or whether it has incomplete similarity,
as suggested by Barenblatt et al. [4–6]. The difference between these two cases is important because the former leads
to the prediction of a logarithmic mean velocity profile, whereas the latter results in a scaling law characterized by
a power-law profile. However, both approaches are based on dimensional analysis, rather than on a theory derived
directly from Navier–Stokes equations. They therefore can only be justified by comparison with experimental data
(and in some cases model parameters must be found by fitting the data).
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In an attempt to resolve this controversy, Zagarola et al. [7,8] performed a new experiment in an air pipe under high
pressure (called the “Superpipe” ) which allowed them to reduce the kinematic viscosity by an order of magnitude
compared to the classical water pipe experiment of Nikuradze [17]. Based on their data, Zagarola et al. [7,8] argued
that there are two overlap regions in the velocity profile: the one closer to the wall has a power-law mean velocity,
while the other one follows by the log-law of the wall. Recent papers by Oberlack [9] showed that the underlying
symmetries of the Navier–Stokes equations permit power-law, logarithmic and even exponential profiles. George
et al. [10] generalized the scaling arguments and obtained a shifted log-law which fits the Superpipe data better
than the classical log-law. Meanwhile, Barenblatt et al. [4–6] continue to claim that their scaling power-law fits
the experimental data better than the log-law nearly everywhere outside of the viscous sublayer. Currently, direct
numerical simulations (DNS) of near-wall turbulence cannot be performed at Reynolds numbers large enough to
obtain a clear scaling for the overlap region [11].

It is becoming clear that further development of the theory is severely hindered by insufficient understanding
of the relevant physical processes. This lack of understanding stems from the absence of rigorous results on the
turbulence dynamics obtained directly from the Navier–Stokes equations. Indeed, even if valid only for special cases,
such results could provide a check on the assumptions used in less rigorous (but more general) phenomenological
theories. They would identify the physically important quantities to be measured in future experiments, and the
physical mechanisms that must be included in future phenomenological models. The derivation of such rigorous
results about near-wall turbulence directly from the Navier–Stokes equations is the main goal of the present paper.
Our analytical theory has three ingredients: rapid distortion theory (RDT), the Reynolds averaged mean flow
equations, and a model for the initial vorticity that provides turbulence forcing.

The first ingredient, RDT, has been a popular and powerful tool for describing shear-flow turbulence since the
work of Moffatt [13] who extended the RDT approach of Batchelor and Proudman [14] to the shear-flow geometry.
RDT has a long history, but we will only mention here those works that developed approaches similar to that used
in the present paper. Hunt [15] generalized RDT to inhomogeneous mean flows and Nazarenko et al. [1] further
generalized it to inhomogeneous turbulence using a WKB formalism based on the Gabor transform (GT). Similar
WKB approaches have been developed to describe local instabilities by Lifshitz and Hammeri [16].

The second ingredient, the Reynolds averaged equations, is the standard way of describing the dynamics of a
mean flow subjected to turbulent stresses. Our aim is to write the averaged turbulent stresses in this equation in
terms of the quantities used in RDT, and thus to obtain a closed coupled system of equations linking the mean flow
and the turbulence. Such a system was derived in the two-dimensional case by Dyachenko et al. [18] for theβ-plane
dynamics, and was used by Dubrulle and Nazarenko [19] to model two-dimensional Euler turbulence. Similar work
has been done for the three-dimensional case of nearly irrotational mean flows by Nazarenko et al. [1] who used GTs
of the velocity components to describe inhomogeneous turbulence and the turbulence stresses. In the present paper,
we will generalize the derivation of [1] to the case of arbitrary rotational mean flows, with shear-flow geometry
as a special case. It is interesting that the idea of coupling RDT and the Reynolds averaged mean flow equations
was present in the early work of Moffatt [13]. He derived equations for evolution of a nearly monochromatic wave
nonlinearly coupled to a background shear via the averaged Reynolds stress. Moffatt used Fourier transforms with,
perhaps, an intuitive understanding that these Fourier transforms depend on a slow coordinate of the inhomogeneous
mean flow. Although a WKB technique justifying such approach was not developed in that paper, all the physical
results obtained were essentially correct. A similar approach was used by Manin and Nazarenko [20] used to describe
nonlinear coupling between Rossby waves and a zonal shear-flow.

However, to describe turbulent shear flows one has to add yet another ingredient to ensure existence of a statistically
steady state, the turbulence forcing in the overlap region. This forcing is provided by an initial vorticity that penetrates
into the overlap region in the form of debris from coherent vortices generated in the viscous sublayer. The view
that near-wall turbulence is a linear driven system was introduced by Landahl [21] who also argued that turbulence
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forcing is produced by vorticity bursts originating in the viscous sublayer and which are intermittent in space and
time. We think that intermittence is important in this case because only nonlinear intermittent vortex structures
can move far from the wall, whereas, according to RDT, a weaker background vorticity is only transported by the
mean flow. Because the viscous sublayer is very thin compared to the overlap region these coherent structures have
a scale which is smaller than the characteristic scale of the mean flow in the overlap region. Also, it is natural to
think that the initial vorticity debris is weak far from the viscous sublayer because it is diluted in a large volume
of fluid. Thus, one can assume that the turbulence forcing is weak and small-scale, which allows one to use the
RDT approach and the scale separation technique. We will give more detail on the restrictions on the amplitude and
scale of the turbulence later. As we will see, the structure of the near-wall turbulence strongly depends on properties
of the turbulent forcing such as its statistical spatial uniformity and the decay rate of its correlations. Therefore,
the initial vorticity is an important quantity to be studied in future experiments and to be included in more general
phenomenological descriptions [22].

The ideas outlined above can be most easily illustrated using two-dimensional shear-flow turbulence as an example
[23]. This example is unrealistic for real applications but its algebra is much simpler than that of three-dimensional
RDT theory and it can be used as a quick introduction to the theory developed in the present paper.

2. Dynamics of turbulence

Let us consider a velocity field in three-dimensional space that consists of a strong large-scale mean component
UUU and weak small-scale fluctuationsuuu

velocity = UUU(xxx, t) + uuu(xxx, t), (1)

UUU = 〈velocity〉, (2)

〈uuu〉 = 0, (3)

L ∼ U/|∇U | � u/|∇u| ∼ l, (4)

U/L � u/l. (5)

Let us define the Gabor transform (GT)

ûuu(xxx,kkk, t) =
∫

f (ε∗|xxx − xxx0|)eikkk·(xxx−xxx0)uuu(xxx0, t) dxxx0, (6)

where 1� ε∗ � ε andf (x) is a function which decreases rapidly at infinity, e.g. exp(−x2). Averaging〈·〉 is
performed over the statistics of a random force which will be introduced below.

One can think of the GT as a local Fourier transform taken in a box centered atxxx and having a size which is
intermediate betweenL andl. The following properties of the GT will be important for our derivation.
1. The GT commutes with the time and space derivatives,∂t and∇. Commutativity with∂t is obvious. Note that

the GT commutes with∇ only for distances from the boundaries which are larger than the support of function
f .

2. The condition of scale separation (4) implies that the GT of small-scale fields (e.g.ûuu(xxx,kkk, t) is finite only for
k ∼ 2π/l � 2π/L).

3. The GT of large-scale fields (e.g. ofuuu(xxx, t)) is exponentially small inε∗ for k ∼ 2π/l.
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4. The rule for taking the GT of derivatives is similar to the one for Fourier transforms in that

GT(∇a) = ikkkâ + O(ε∗), (7)

wherea is a small-scale quantity.
5. The inverse GT is simply an integration over all wavenumbers, e.g.

u(x, t) = 1

f (0)

∫
ûuu(xxx,kkk, t)

dkkk

(2π)3
. (8)

Let us substitute (1) into the Navier–Stokes equation,

∂tUUU + ∂tuuu + (UUU · ∇)UUU + (UUU · ∇)uuu + (uuu · ∇)UUU + (uuu · ∇)uuu = −∇p + σ + ν∇2UUU + ν∇2uuu. (9)

Hereσ = σ(xxx, t) describes an external random forcing. In the case of near-wall turbulence, this term models the
vorticity seeding the outer layers due to the inner-layer vortex structures which break and penetrate into the outer
layers and serve as initial turbulence material. We now apply the GT to the above equation withk ∼ 2π/l ∼
1 � 2π/L ∼ ε and only retain terms up to first power inε andε∗ (we choseε∗ such thatε∗ � ε � (ε∗)2). All
large-scale terms (the first and the third ones on the LHS and the third one on the RHS) give no contribution because
their GT is exponentially small according to property (3) above. Furthermore, the nonlinear term(uuu · ∇)uuu may be
neglected as it is small compared to(uuu · ∇)UUU because of the assumption (5). As a result we have

∂tûuu + GT{(UUU · ∇)uuu} + (ûuu · ∇)UUU = −ikkkp̂ + σ̂ − νk2ûuu. (10)

When finding the GT of(uuu · ∇)UUU we neglected the coordinate dependence of∂xl
Um because this term is already

small as o(ε) and any corrections would be of second order. Also, we neglected the order o(ε) correction to the
pressure term because, as we will see later,p̂ is of orderε itself. We assumed thatσ̂ = o(ε), which is necessary in
order to achieve a stationary state. Finally, we neglected corrections to the viscosity term by assuming that viscosity
is of orderε or less. Let us now find

GT{(UUU · ∇)uuu} =
∫

f (ε∗|xxx − xxx0|)eikkk·(xxx−xxx0)(UUU(xxx0) · ∇x0)uuu(xxx0) dxxx0. (11)

Taking into account thatUUU(xxx0) varies slowly on distances of order 1/ε∗ (at whichf decays) one can Taylor expand
it aroundxxx0 = xxx. Retaining only the first two terms in the Taylor expansion (which corresponds to retaining only
O(ε∗) and greater), we have

GT{(uuu · ∇)uuu} =
∫

f (ε∗|xxx − xxx0|)eikkk·(xxx−xxx0)([UUU(xxx) + (xxx0 − xxx) · ∇xUUU(xxx)] · ∇x0)uuu(xxx0) dxxx0

= (UUU · ∇)ûuu − ∇(UUU · kkk) · ∇kûuu. (12)

When calculating the second term on the RHS of (12), we took into account that(xxx0−xxx)eikkk·(xxx−xxx0) = i∇keikkk·(xxx−xxx0) and
we integrated by parts, neglecting the derivative off because it isε∗ times less than the derivative of exp[ikkk ·(xxx−xxx0)].
Thus, (10) becomes

∂tûuu + (UUU · ∇)ûuu − ∇(UUU · kkk) · ∇kûuu + (ûuu · ∇)UUU = −ikkkp̂ + σ̂ − νk2ûuu. (13)

We now eliminatep̂ by taking into account the incompressibility condition∇ ·uuu = 0, which, in terms of the GT, is

kkk · ûuu + O(ε∗) = 0. (14)

Multiplying (13) bykkk and taking into accountkkk · ∇(UUU · kkk) · ∇kûuu = −ûuu · ∇(UUU · kkk) we have

p̂ = 2i

k2
ûuu · ∇(UUU · kkk) − i

k2
(kkk · σ̂σσ ). (15)
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As we see,p̂ = O(ε∗). Substitutingp̂ into (13) we have

Dtûuu + (ûuu · ∇)UUU = 2kkk

k2
ûuu · ∇(UUU · kkk) + σ̂⊥ − νk2ûuu, (16)

where

σ̂⊥ = σ̂ − kkk

k2
(kkk · σ̂σσ ), (17)

and

Dt = ∂t + ẋxx · ∇ + k̇kk · ∇kkk,

ẋxx = UUU = ∇kH, (18)

k̇kk = −∇(kkk · UUU) = −∇H, (19)

H = UUU · kkk. (20)

Eq. (16) provides an RDT description of turbulence generalized to the case when both the mean flow and the
turbulence are inhomogeneous. This equation has the form of a WKB-type transport equation, the characteristics
of which (rays) are described by Hamiltonian equations (18) and (19) with Hamiltonian function (20) having the
physical meaning of a Doppler shift [1,19]. It is applicable to an arbitrary (slowly varying) mean flow that may
contain both vorticity and strain in any proportion. In the special case where the mean flow is irrotational (pure
strain) Eq. (16) coincides with the WKB RDT equation derived in [1].

In this paper, we are interested in a shear-flow geometry, so thatUUU = (U(y, t), 0, 0). In this case, (16) reduces to

Dtûuu − exΩûy = −2kkk

k2
Ωûykx + σ̂⊥ − νk2ûuu, (21)

where

Dt = ∂t + U∂x + Ωkx ∂ky , (22)

andΩ = −∂yU is the mean flow vorticity.

3. Dynamics of the mean flow

In order to derive a mean flow equation one has to filter out the small scales from the Navier–Stokes equations
(9) by ensemble averaging over the statistics of the random forcingσ . Using the component form for convenience,
we have

∂tUi + (UUU · ∇)Ui + ∂xl
〈uiul〉 = −∂xi

P + ν∇2Ui, (23)

whereP = 〈p〉. The nonlinear term∂xl
〈uiul〉, although small in general, can be the dominant term in the mean

flow dynamics. In particular, this is the case for shear flows, where the large-scale self-interaction(UUU · ∇)Ui is zero
because of the parallel geometry, and even small turbulent stresses can lead to significant changes in the mean profile
over long times. Eq. (23) is analogous to the equation derived for the large-scale flow by Nazarenko et al. [1] who
considered the dynamics of a turbulent spot in an initially irrotational mean flow. The only difference compared to
[1] is that in the present paper the averaging is performed over the statistics of a random force, whereas in [1] the
large-scale equation was obtained via a space averaging using the filterf 2(ε∗x).
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For the shear-flow geometryuuu = (U(y), 0, 0), (23) becomes

∂tU = −∂yτ − ∂xP + ν∂2
yyU, (24)

whereτ = 〈u1u2〉 is the turbulent shear stress. This is the standard equation used for description of turbulent shear
flows. They andz components of the mean flow are not generated by turbulent stresses if the forcingσ is statistically
symmetric with respectz → −z, as we will see later.

4. Solution for 〈uiul〉〈uiul〉〈uiul〉

Let us use property (5) of the GT to rewrite the averaged Reynolds stresses〈uiul〉 as follows:

〈uiul〉 = 1

f 2(0)(2π)6

∫
〈ûi (xxx,kkk′, t)ûl(xxx,kkk′′, t)〉 dkkk′ dkkk′′. (25)

Here we have to substitutêui found by solving the RDT (16) (21 in case of the shear-flow geometry). Because Eq.
(16) is linear, one can write its solution in the following form:

ûi (xxx,kkk, t) =
∫

gij (xxx,kkk, t;xxx′, kkk′, t ′) σ̂⊥j (xxx
′, kkk′, t ′) dxxx′dkkk′dt ′, (26)

wheregij is the Green’s function. Substituting this expression into (25) we have

〈uiul〉 = 1

f 2(0)(2π)6

∫
gij (xxx,kkk′, t;xxx1, kkk1, t1)glm(xxx,kkk′′, t;xxx2, kkk2, t2)

×〈σ̂⊥j (xxx1, kkk1, t1)σ̂⊥m(xxx2, kkk2, t2)〉 dxxx1 dkkk1 dt1 dxxx2 dkkk2 dt2 dkkk′ dkkk′′. (27)

Using the definition of the GT we have

〈σ̂⊥j (xxx1, kkk1, t1)σ̂⊥m(xxx2, kkk2, t2)〉 =
∫

f (ε∗|xxx1 − xxx′|)f (ε∗|xxx2 − xxx′′|)eikkk1·(xxx1−xxx′)+ikkk2·(xxx2−xxx′′)

×〈σ⊥j (xxx
′, t1)σ⊥m(xxx′′, t2)〉 dxxx′ dxxx′′

=
∫

f 2(ε∗|xxx1 − xxx′|)eikkk1·(xxx1−xxx′)+ikkk2·(xxx2−xxx′−r )Ajm(r , ξ) dxxx′ dr

= (2π)3f 2(ε∗|xxx1 − xxx2|/2)δ(kkk1 + kkk2) eikkk2·(xxx2−xxx1)Âjm(kkk2, ξ), (28)

whereξ = t2 − t1, rrr = xxx′′ − xxx′ and

Ajm(rrr, ξ) = 〈σ⊥j (xxx
′, t1)σ⊥m(xxx′′, t2)〉 = 〈σ⊥j (0, 0)σ⊥m(rrr, ξ)〉 (29)

is the second correlator of the random forcing, which is assumed to be homogeneous in space and time (later we
will also touch upon the case of forcing which is inhomogeneous in space). Further,

Âjm(kkk, ξ) =
∫

Ajm(rrr, ξ)eikkk·rrr drrr (30)

is the Fourier transform of the second correlatorAjm. When deriving (28) we took into account thatAjm(rrr, ξ)

decays faster inrrr thanf does (we putxxx′ = xxx′′ in f ). In other words, we assumed that the forcing is small-scale so
thatÂjm(kkk, ξ) is concentrated atk � 2π/L. We also took into account thatf is a slow function compared to the
complex exponential and thereforeδ(kkk1 + kkk2) appears after integration overxxx′.



164 S. Nazarenko et al. / Physica D 139 (2000) 158–176

Substituting (28) into (27) we have

〈uiul〉 = 1

(2π)3f 2(0)

∫
f 2(ε∗|xxx1 − xxx2|/2) gij (xxx,kkk′, t;xxx1, kkk1, t1)glm(xxx,kkk′′, t;xxx2, kkk2, t1 + ξ)eikkk2·(xxx2−xxx1)

×Âjm(kkk2, ξ) dxxx1 dt1 dxxx2 dkkk2 dξ dkkk′ dkkk′′. (31)

In case of the shear-flow geometry, we have to find the Green’s function of (21),gij (xxx,kkk, t;xxx1, kkk1, t1), as a solution
of the homogeneous equation

∂tgij + U∂xgij + Ωk1 ∂ky gij − δ1iΩgij = 2ki

k2
Ω g2j kx − νk2gij (32)

with initial conditions

gij |t=t1 = δij δ(xxx − xxx1)δ(kkk − kkk1). (33)

But solving this problem is similar to finding the classical RDT solution for constant shear of a monochromatic
wave withkkk = kkk1 at t = t1. The only difference is that we now consider a localized wavepacket which is advected
by the mean flow. Thus, it is easy to see that

gij (xxx,kkk, t;xxx1, kkk1, t1) = κij D δ(x − x1 − Uξ1)δ(y − y1)δ(z − z1)δ(kx − k1x)

×δ(ky − k1y − Ω k1xξ1)δ(kz − k1z), (34)

whereξ1 = t − t1,D is a viscosity factor,

D = exp[−2νξ1(k
2
1 + Ωk1xξ1k1y + Ω2ξ2

1k2
1x/3)] (35)

and the matrixκij is the same as for the constant-shear RDT solution [13],

κij =




1
k2

1

k2
h

[[
k2
z

kxkh

θ + kxky

k2

]]
0

0
k2

1

k2
0

0
kzk

2
1

k3
h

[[
θ + khky

k2

]]
1




, (36)

where

kh =
√

k2
x + k2

z , θ = arctan
kh

ky

.

Here, the double square brackets mean taking the difference of values att andt1, for example [[θ ]] = θ(kkk)− θ(kkk1).
Substituting (34) in (31) and integrating using the delta functions, we have

〈uiul〉 = 1

(2π)3f 2(0)

∫ ∞

0
dξ1

∫ ξ1

−∞
dξ

∫
R3

dkkk1f
2(ε∗|Uξ |/2)κij (kkk1, Ωξ1)κlm(−kkk1, Ω(ξ1 − ξ))

×D e−ik1xUξ Âjm(kkk1, ξ). (37)

Note thatκij depends on the coordinate and time only via combinationΩ(y)ξ , a fact that will become important later.
In most realistic situations the small-scale forcing correlationAjm(kkk, ξ) decays in time faster than the characteristic
large-scale time 1/Ω. In this case

〈uiul〉 = 1

(2π)3

∫ ∞

0
dξ1

∫
R3

dkkk1 κij (kkk1, Ωξ1)κlm(−kkk1, Ωξ1) D Ãjm(kkk1, −k1xU), (38)
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whereÃjm(kkk, w) is the Fourier transform of(f 2(ε∗|Uξ |/2)/f 2(0))Âjm(kkk, ξ) with respect to timeξ ,

Ãjm(kkk, w) =
∫

f 2(ε∗|Uξ |/2)

f 2(0)
e−iwξ Âjm(kkk, ξ) dξ. (39)

In the case when the forcing correlation time is smaller than the small-scale time 1/Ukx we have

Ãjm =
∫

Âjm(kkk, ξ) dξ, (40)

so thatAjm is independent of the second (frequency) variable and, therefore,Ãjm(kkk, −k1xU) ≡ Ãjm(kkk) is inde-
pendent ofU(y). In this case, the turbulent Reynolds stresses〈uiul〉 depend on the coordinate only viaΩ which,
as we shall see later, is crucial for existence of the log solution forU(y) and for some important properties of the
spectra. In the following we restrict our attention to this case, leaving other possibilities to another article [22].
Further, we assume the wavenumber dependence ofÃjm to be of the following standard form:

Ãij (kkk) = 3F(kkk)

8π
(k2δij − kikj ), (41)

If, in addition, functionF depends only on the absolute value ofkkk then (41) corresponds to an isotropic forcing of
turbulence [13,14] (which we are not going to assume).

5. Turbulent shear stressτττ

We start by calculatingτ = 〈u1u2〉, the component of the turbulent Reynolds stress tensor which determines the
mean flow dynamics of the shear-flow,

τ = 4

(2π)3

∫ ∞

0
dξ

∫ ∞

0
dk1x

∫ ∞

−∞
dk1y

∫ ∞

0
dk1z

3F(kkk1)

8π
Dκ22(kkk1, Ωξ)

×[(k2
1 − k2

1x)κ12(−kkk1, Ωξ) − k1xk1yκ11(−kkk1, Ωξ)]

= 4

(2π)3

∫ ∞

0
dξ

∫ ∞

0
dk1x

∫ ∞

−∞
dk1y

∫ ∞

0
dk1z

3F(kkk1)

8π
exp[−2νξ(k2

1 + Ωk1xξk1y + Ω2k2
1xξ

2/3)]

×k2
1

k2

(
(k2

1 − k2
1x)

k2
1

k2
h

[[
k2
z

khkx

θ + kxky

k2

]]
− k1xk1y

)
. (42)

Here, we took into account the symmetry of the integrand with respect tokkk → −kkk (sinceF(−kkk) = F(kkk) because
the original forcing termσ is a real function). Thus, we need only integratekx from 0 to∞ and double the result.
For simplicity we also assumed thatF is symmetric with respect tokz → −kz.

Let us change variables

{ξ, k1x, k1y, k1z} → {h = −Ωk1xξ, kh =
√

k2
1x + k2

1z, ky, s = k1x/kh}. (43)

Without loss of generality, we assume thatΩ > 0. Taking into account that the Jacobian associated with this change
of variables is 1/Ωs

√
1 − s2, we have

τ = 1

Ω

∫ ∞

0
dkh

∫ 0

−∞
dh

∫ ∞

−∞
dky

∫ 1

0

ds

s2
G(s, kh, h, ky) e−α/s, (44)

where
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G = 3

(2π)4
F(khs, ky + h, kh

√
1 − s2)

k2
h + (ky + h)2

√
1 − s2(k2

h + k2
y)

{
k2
h + (ky + h)2

k2
h

(k2
h(1 − s2) + (ky + h)2)

×
[
(1 − s2)

(
arctan

kh

ky

− arctan
kh

ky + h

)
+ khs

2

(
ky

k2
h + k2

y

− ky + h

k2
h + (ky + h)2

)]

−khs
2(ky + h)

}
, (45)

and

α = −2ν

Ω
h(k2

h + k2
y + hky + h2/3)/kh. (46)

(Note thatα > 0.) One can see that even very small viscosity cannot be neglected here, that is one cannot put
e−α/s = 1 in the integrand because the factor 1/s2 would give rise to a divergence ats = 0. In order to find the
asymptotic expression forτ for small viscosities, we split the integral overs as follows:∫ 1

0

ds

s2
G(s) e−α/s = I1 + I2 + I3, (47)

where

I1 =
∫ 1

0

ds

s2
(G(s) − G(0) − sG′(0)) e−α/s, (48)

I2 = G(0)

∫ 1

0

ds

s2
e−α/s = G(0)

α
, (49)

I3 = G′(0)

∫ 1

0

ds

s
e−α/s = G′(0) Ei(−α), (50)

where Ei(x) is the exponential-integral function [24] andG′(0) denotes the derivative ofG with respect tos taken
at s = 0. The expression(G(s) − G(0) − sG′(0))/s2 is not singular ats = 0 and one can put e−α/s = 1 in the
integrand ofI1 in the limit ν → 0,

I1 =
∫ 1

0

ds

s2
(G(s) − G(0) − sG′(0)). (51)

Also, for ν → 0 one can use the asymptotic expression for Ei(α) atα → 0 [24] and write,

I3 = G′(0)(C + logα + O(α)), (52)

whereC is Euler’s constant. One can see thatI2 gives the largest contribution toτ . On the other hand, this contribution
is independent ofy (due to a cancellation ofΩ ’s) and therefore does not contribute to the mean flow Eq. (24). Note
that this property is very sensitive to the assumptions made about the turbulence forcing, andI2 may give the main
contribution to the mean flow dynamics if the second correlator of the forcingσ decays slowly in time or if it depends
ony. In our case, the main contribution toτ comes from the log term inI3 if G′(0) 6= 0, that is if the correlator of the
turbulence forcing is asymmetric inx direction,∂kxF |kx=0 6= 0. For the symmetric caseG′(0) = ∂kxF |kx=0 = 0
and the main contribution toτ comes fromI1. Summarizing, one can writeτ as a sum of three terms: a constant
τc (independent ofy), an asymmetric contributionτa, and a symmetric termτs. The turbulent shear stress is thus
expressed,

τ = τc + τa + τs, (53)
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where

τc = 1

Ω

∫ ∞

0
dkh

∫ 0

−∞
dh

∫ ∞

−∞
dkyG(0)/α, (54)

τa = λa

Ω
log

νk2∗
Ω

, (55)

τs = λs

Ω
, (56)

λa =
∫ ∞

0
dkh

∫ 0

−∞
dh

∫ ∞

−∞
dkyG

′(0), (57)

λs =
∫ ∞

0
dkh

∫ 0

−∞
dh

∫ ∞

−∞
dky

∫ 1

0

ds

s2
(G(s) − G(0)), (58)

G(0) = F(0, ky + h, kh) γ, (59)

G′(0) = ∂F (kx, ky + h, kh)

∂kx

∣∣∣∣
kx=0

khγ, (60)

γ = 3

(2π)4

(k2
h + (ky + h)2)3

(k2
h + k2

y)
2kh

(
arctan

kh

ky

− arctan
kh

ky + h

)
. (61)

Note that whenG′(0) 6= 0, termτs must be ignored because in this case it is of the same order as small corrections
to τa which are already neglected in (57). Termτs is only important whenG′(0) = 0; thus we putG′(0) = 0 in (58).
Note that the sign ofλa, and therefore the sign ofτa, depends on the sign ofG′(0), i.e. on the way of asymmetry of
the turbulence forcing.

6. Stationary mean flow profile

6.1. Qualitative properties of mean flow profile

The evolution of the mean flow is determined by (24), which is quite general, independent of the actual model
(in our case, RDT) used to calculate the turbulent shear stressτ . The RHS of (24) is the negative divergence of the
x-momentum flux (also called the total shear stress). Taken at the wall, they-component of this flux, i.e.τ + νΩ,
is equal to the friction force per unit area. The friction force is usually written asu2∗ whereu∗ is called the friction
velocity. For stationary mean flow (24) implies

τ + νΩ = −(y − H/2) ∂xP = (1 − 2y/H) u2
∗, (62)

where we measurey as the distance from one of the walls and we took into account the fact that the total shear
stress must be zero in the center of the channel, aty = H/2. Because we restricted ourselves to the caseΩ > 0,
we haveU < 0 and∂xP > 0 (which agrees with∂xP = 2u2∗/H ).

Let us now mention some general properties of the turbulent stressτ and the mean profile that follow from our
model. If τ is given by (53)–(56) then the vorticity of the stationary mean flow must be a monotonic function
of y. Indeed,Ω(y) is not allowed to have a local maximum or minimum because the inverse functiony(Ω) is
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Fig. 1. Sketch of a typical experimentally measured balance between the turbulent stressτ and viscous shear stressνΩ.

uniquely defined via (62). In other words, the stationary mean velocity profile cannot have any inflection points and
is, therefore, linearly stable.

The turbulent stressτ dominates the viscous stress,νΩ, everywhere except for a narrow layer near the wall. A
typical experimentally measured balance between the turbulent stressτ and viscous shear stressνΩ is illustrated
in Fig. 1. Note thatτ = 0 at the wall and it has a maximum aty+ ≈ 30, wherey+ = yu∗/ν. The assumptions
we made about the weakness of the turbulence forcing and its uniformity are not likely to be valid in the narrow
near-wall regiony+ < 30 which is dominated by strong coherent vortices; it only makes sense to apply our model
to the regiony+ > 30. Fory+ > 30 the turbulent stressτ = 0 tends to a linear function

τ = (1 − 2y/H) u2
∗. (63)

Fory � H we have

τ = τc = u2
∗. (64)

This follows from the condition that the vorticity profile must be singular at the wally = 0 for viscosity to be
important when approaching the inner layer,y → 0. However, when measured in inner variables such a singularity
is allowed to be several viscous lengths off the wall, i.e. aty+ = a ∼ ν/u∗. The constanta can only be found if the
inner profile is known (our RDT approach is not applicable there). We will discuss later some consequences of this
uncertainty for the mean velocity profile.

Relation (64) represents an integral condition on the level of the turbulence forcingσ in the statistically stationary
state because such a forcing is the only dynamical quantity that enters into the expression forτc. Also, because
τc ∝ 1/ν, σ is small for small viscosity, which means RDT is a good description of turbulence in this case. Note
that in reality the turbulence forcing is provided by the initial vorticity generated in the viscous sublayer and there
is a self-consistent mechanism that adjusts its level to the value necessary to achieve a statistically stationary state.
Note that according to (64)τc must be positive; this condition will be an important test for our theory.

Now consider the simplest case, when the turbulence forcing is symmetric so thatτa = 0. In this case the
stationary mean profile is to be found from (63) and (56),

λs

∂yU
= 2y u2

∗/H, (65)

which gives

U(y) = λsH

2u2∗
logy + const. (66)



S. Nazarenko et al. / Physica D 139 (2000) 158–176 169

Note that according to (65)λs must be negative. This is an important condition for the stationary state to exist, and
it will be shown to be satisfied in the next section.

In practical situations the turbulence forcing is likely to be asymmetric. In this caseτa � τs and we have

λa

Ω
log

νk2∗
Ω

= −2y u2
∗/H. (67)

The constantλa can be either positive or negative depending on forcing asymmetry, see (57) and Section 6.2.
However, according to (67) (taking into accountΩ > 0 and(νk2∗)/(Ω) � 1) a stationary state is only possible
if λa > 0, so one should expect positiveλa in experiments. Later we will see thatλa > 0 does correspond to the
orientation of the streaks observed in experiments, which means that the real turbulence forcing adjusts itself in
such a way that the stationary state is possible.

Let us introduce notationL = λaH/2νk2∗u2∗. Taking into account (64) we see thatL is a distance which is of
order of the channel widthH . Solving (67) forΩ by one iteration we have

Ω = −νk2
∗
L

y
log

y

L
. (68)

Integrating this equation we have the following mean velocity profile,

U(y) = 1

2
νk2

∗L log2 y

L
+ const. (69)

As usual, the constant has to be found by matching to the solution in the viscous sublayer, which we cannot do
reliably using the present model. In fact, one can show that the relation (69) also gives a log-law dependence in
some intermediate range of the coordinates. Indeed, one can rewrite (69) as

U(y) = 1

2
νk2

∗L
(
log2 y

L
− log2y0

L

)
= −1

2
νk2

∗Llog
yy0

L2
log

y

y0
, (70)

where constanty0 corresponds to the coordinate where the inviscid log2 profile becomes zero, and is therefore
located near the viscous sublayer,y0 ∼ ν/u∗. Fory0 � y � L we have

U(y) = 1

2
νk2

∗L log
y0

L
log

y

y0
. (71)

Thus, we see that in the intermediate rangey0 � y � L the velocity profile is logarithmic.
As we discussed before, our model is not applicable to the regiony+ < 30 which is dominated by strongly

nonlinear vortex structures. On the other hand, Eq. (62) can be solved easily for the entire range ofy including
y+ < 30, and some interesting observations result from matching the resulting profile to the no-slip boundary
condition at the wall. For simplicity, let us again consider the symmetric case withτa = 0. In this case, the solution
of (62) satisfying the boundary conditionU(0) = 0 is

U(y) = −u2∗y2

2Hν
+ y

2ν

√
u4∗y2/H 2 + νλs + λsH

2u2∗
log

u2∗y/2Hν + 2
√

u4∗y2/h2 + νλs

2
√

νλs
, (72)

which in the limit of small and large distances from the wall gives

U = 2

√
λs

ν
y for y2 � νλsH

2/u4
∗, (73)

U = λsH

2u2∗
log

2u2∗y
H

√
νλs

for y2 � νλsH
2/u4

∗. (74)
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For comparison, let us write the log-law of the wall in its usual form,

U/u∗ = 1

κ
logy+ + B. (75)

Our profile (75) involves the parameterλs which depends on the properties of the turbulence forcing and is not fixed
in our model. However, one may impose a condition thatλs has to be such that the pre-log coefficients in (74) and
(75) coincide. Taking (as in the Superpipe experiment [7,8]) the von Karman constantκ = 0.44 and the Reynolds
numberR∗ = u∗H/ν = 851 we haveB ≈ 8.6. This result is in a reasonable agreement with the experimentally
measured valueB ≈ 6.5. Again, such a comparison should be made with caution because our model is not designed
to apply to the viscous sublayer. In addition, as we mentioned above, our outer solution can only be found with
accuracy up to an arbitrary coordinate offseta of the order of several viscous lengths, which implies that we cannot
distinguish between the classical log-law (75) and a shifted log profile

U/u∗ = 1

κ
log(y+ + a) + B. (76)

Profile (76) was proposed by George et al. [10] based on a refined scaling argument, and it is quite likely that such
a profile describes the near-wall turbulence better than (75).

We would like to emphasize that the logarithmic velocity profile was obtained in this section under several crucial
assumptions, one of which being the spatial uniformity of the turbulence forcing. In fact, the existence of the log
solution is very sensitive to this particular assumption. Indeed, if the strength of the forcing depends the distance
from the wall then the coefficientsλs andλa will be functions ofy. For example, if we assumeλs ∝ yp then the log
solution (66) will be replaced by a power-law solution. Power-law velocity profiles have been recently suggested
as a better description of the near-wall turbulence by Barenblatt et al. [4–6]. Such profiles have also been obtained
using a symmetry argument by Oberlack [9]. Our analytical study shows that the realizability of the logarithmic
and algebraic profiles depends strongly on the properties of the initial vorticity. Thus, to make a reliable conclusion
in favor of the logarithmic or the algebraic profile one has to analyze the initial vorticity, e.g. by using DNS data. In
addition to the statistical uniformity of the initial vorticity, these properties include its weakness and the fast decay
in time of its second correlator.

6.2. Evaluation of model constants

In the previous section we examined qualitatively the shape of the mean flow profile, but did not explicitly evaluate
the model constantsλs, τc, λa. These constants depend on the forcing, and in this section we evaluate them for
particular forcing models.

We first consider the (rather unphysical) case of symmetric forcing, where the dominant term isλs. In this case
we choose the following symmetric forcing:

F(k) = Γ
k2

k2∗
exp(−k2/k2

∗) (Γ = const> 0), (77)

which behaves likek4 ask → 0 (wherek = |k|) and decays exponentially for largek. Substituting this forcing
in (58) gives a multidimensional integral which can only be evaluated analytically inkh. The integrals in the other
three dimensions have been evaluated numerically using adaptive numerical quadrature to give

λs = −6.8354× 10−3 Γ k4
∗. (78)

Note that the constant is negative, as required for existence of the stationary state. The sign ofλs should not depend
on the precise form of the forcing (although its magnitude will).
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Next, we consider an asymmetric forcing. This case is more physical, since the forcing in a shear-flow is likely
to be asymmetric. We choose a forcing analogous to the symmetric forcing,

F(kx, ky, kz) = Γ
k4
z

k4∗
exp

{
−
[

1
2a2(kx − ky)

2 + 1
2(kx + ky)

2 + k2
z

]
/k2

∗
}

(Γ = const> 0). (79)

Note that this forcing corresponds to an ellipse in thekx − ky plane with its major axis at+45
◦

(−45
◦
) if a < 1

(a > 1). Asa → 0 (a → ∞) the eccentricity of the ellipse increases (the forcing becomes increasingly asymmetric).
Note that the 450 angle does correspond to the streaks observed in shear layers. In this case the integrals in (57) can
be done entirely analytically, giving

λa = 32

25(2π)2

(1 − a2)

(1 + a2)4
[16(b6 + b4 + b2 + 1) + 5b(b4 + 1) + 6b3] Γ k4

∗, (80)

whereb2 = 1
2(a2 + 1). It is interesting to note that ifa < 1 thenλa > 0, while if a > 1 thenλa < 0. As

we mentioned in the previous section, a stationary solution is possible only for negativeλa. This selects the type
of anisotropy that agrees with experimentally observed orientation of the streaks. This fact not only supports our
theory, but it also identifies the mechanism that selects the orientation of the streaks in the statistically stationary
state. In the limit of large eccentricities one finds

λa

Γ k4∗
≈ − 32

24(2π)2
= −0.01425+ O

(
1

a

)
if a � 1, (81)

λa

Γ k4∗
= 32

25(2π)2

(
30+ 37

8

√
2

)
= 0.26+ O(a2) if a � 1. (82)

The final constant to be investigated isτc, the part of the shear stress independent ofy. Taking the asymmetric forcing
(79) we find that the integral inkh can be done analytically, but the other two must be calculated numerically. When
this is done we find thatτc is always positive and

τcν

Γ k2∗
→ 0 as a → ∞, (83)

τcν

Γ k2∗
→ 5.3436× 10−3 as a → 0. (84)

The predictionτc > 0 agrees with condition (64), which means that the turbulent shear stress must always have the
same sign as the viscous stress. This arises becauseτc � τs, τa for smallν.

Our theory also predicts particular scalings of the forcing scalek∗ and its intensity as a function of the Reynolds
numberR∗ = u∗H/ν and the channel widthH . Indeed, according to the above formulae and condition (64) we
have

Γ k2
∗/ν ∼ u2

∗. (85)

On the other hand, comparison of (66) with (75) and taking into account (78) gives

Γ k4
∗H ∼ u3

∗. (86)

These two relations give the following prediction for the forcing scale

k∗H ∼
√

R∗. (87)

Taking into account thatR∗ � 1 we see that the forcing scale is much less than the channel width which is another
justification for the scale separation assumption used in this paper.
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Let us assume that starting vorticityω is injected at the rate determined by the characteristic mean flow time 1/Ω

so thatF ∼ Γ ∼ ω2Ω. Taking into account that in the logarithmic layerΩ ∼ u∗/y and solving forΓ from (85)
and (86) we have

ω2

Ω2
∼ (y/H)3 R−2

∗ . (88)

Taking into account that the log region lies aty < 0.1H and thatR∗ � 1 we see that the initial vorticity is much
less than the mean flow vorticity, which justifies the RDT used in this paper.

In this section we have given some indication of the properties a self-consistent forcing should have. This topic
will be addressed in more detail in a forthcoming article [22].

7. Spectra

The one-dimensional energy spectraφij (kx, y) are quantities frequently measured in experiment. They are defined
in such a way that

〈uiuj 〉 =
∫

φij (kx, y)
dkx

2π
. (89)

Using (38) and (41) we have

φil(kx, y) = 1

(2π)2

∫ ∞

0
dξ

∫
R2

dk1y dk1z κij (kkk1, Ωξ)κlm(−kkk1, Ωξ) D
3F(kkk1)

8π
(k2

1δjm − k1j k1m). (90)

Forφ11(kx, y) we have

φ11 = 1

(2π)2

∫ ∞

0
dξ

∫
R2

dk1y dk1z

3F(kkk1)

8π
[κ2

11(k
2
1y + k2

1z) − 2κ12κ11k1xk1y + κ2
12k

2
h]

= 1

(2π)2kxΩ

∫ ∞

0
dβ

∫
R2

dk1y dk1z

3F(kkk1)

8π

[
k2

1y + k2
1z + k4

1

k2
h

A2 − 2k1xk1y

k2
1

k2
h

A

]

×exp

[
−2

νβ

Ωkx

(k2
1 + βk1y + β2/3)

]
, (91)

where

A = k2
z

kxkh

arctan
kh

k1y + β
+ kxky

k2
− k2

z

kxkh

arctan
kh

k1y

− kxk1y

k2
1

, (92)

andβ = Ωkxξ . Note that the main contribution to this integral comes fromk1y ∼ k1z ∼ k∗, wherek∗ is the
characteristic wavenumber of the forcingF . We are interested in the limit of small viscosities,

ν � Ωkx/k3
∗. (93)

In this case the main contribution to the integral inφ11 comes fromβ � k∗, so that

φ11 = 1

(2π)2kxΩ

∫ ∞

0
dβ

∫
R2

dk1y dk1z

3F(kkk1)

8π


k2

1y + k2
1z + k4

1

k2
h

(
k2
z

kxkh

arctan
kh

k1y

+ kxk1y

k2
1

)2

−2k1xk1y

k2
1

k2
h

(
k2
z

kxkh

arctan
kh

k1y

+ kxk1y

k2
1

)]
exp

[
− 2νβ3

3Ωkx

]
. (94)



S. Nazarenko et al. / Physica D 139 (2000) 158–176 173

Integrating overβ we have

φ11 = B

ν1/3Ω2/3
, (95)

where

B = 3

4(2π)3k
2/3
x

∫ ∞

0
e−(2p3/3) dp

∫
R2

dk1y dk1zF (kkk1)


k2

1y + k2
1z + k4

1

k2
h

(
k2
z

kxkh

arctan
kh

k1y

+ kxk1y

k2
1

)2

−2k1xk1y

k2
1

k2
h

(
k2
z

kxkh

arctan
kh

k1y

+ kxk1y

k2
1

)]
. (96)

One can see thatφ11(kx, y) depends ony via Ω in a universal way. In the log regionΩ ∝ 1/y so thatφ11(kx, y) ∝
y2/3. The dependence ofφ11(kx, y) onkx is universal for the wavenumber rangekx � k∗, in which case

φ11 = c11

ν1/3Ω2/3
k
−8/3
x , (97)

where

c11 = 3

4(2π)3

∫ ∞

0
e−(2p3/3) dp

∫
R2

dk1y dk1zF (0, k1y, k1z)(k
2
1y + k2

1z)
2 arctan2

k1z

k1y

. (98)

φ11 is a spectrum that is often measured in experiments. Typically it behaves likek−1
x at low wavenumbers and

k
−5/3
x for higherkx [25], and both of these scalings are different from thek

−8/3
x obtained here. Note that in the

two-dimensional case our theory does predictφ11 ∝ k−1
x , see [23], which may indicate that in reality the turbulence

in thek−1
x region is effectively two-dimensional. However, one has to be cautious when interpreting our result in

terms of the experiments because our theory is not applicable in the rangekx ∼ 1/y and below, which is where the
experimental data is usually obtained [25]. This is because in the present paper we ignored the turbulence blocking
effect which becomes important atkx ∼ 1/y [15]. Inclusion of the turbulence blocking effect is an interesting
subject for future research.

The situation with spectra measured in DNS is quite different. The small-scale one-dimensional spectra are indeed
measured in DNS, but they turn out to be much steeper than thek

−8/3
x spectrum [11,12]. This difference may be

due to numerical dissipation at highkx due to the insufficient Reynolds numbers of current DNS.
To calculateφ12(kx, y) we note that in this case the integral converges even if we putν = 0, so that in the limit

of small viscosities dissipation factorD should be ignored. We have

φ12 = 1

(2π)3Ωkx

∫ ∞

0
dβ

∫ ∞

−∞
dk1y

∫ ∞

−∞
dk1z

3F(kkk1)

8π

k2
1

(k1y + β)2 + k2
h

[
(k2

1 − k2
1x)

k2
1

k2
h

A − k1xk1y

]
. (99)

Again, the dependence ofφ12(kx, y) onΩ(y) is universal,φ12(kx, y) ∝ 1/Ω, which impliesφ12(kx, y) ∝ y in the
log range. Dependence onkx is universal forkx � k∗,

φ12 = c12

Ωk2
x

, (100)

where the constantc12 is

c12 = 1

(2π)3

∫ ∞

0
dβ

∫ ∞

−∞
dk1y

∫ ∞

−∞
dk1z

3F(0, k1y, k1z)

8π

(k2
1y + k2

1z)
3

((k1y + β)2 + k2
1z)k1z

×
(

arctan
k1z

k1y + β
− arctan

k1z

k1y

)
. (101)
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To findφ22 we note that viscosity is unimportant and can be set equal to zero in this case too. We have

φ22 = 1

(2π)2Ωkx

∫ ∞

0
dβ

∫
R2

dk1y dk1z

3F(kkk1)

8π

k4
1

((k1y+β)2+k2
h)

2
k2
h

1

4πΩkx

∫
R2

dk1y dk1z

3F(kkk1)

8π

k4
1

kh

, (102)

so that

φ22 → c22

Ωkx

for kx/k∗ → 0, (103)

where

c22 = 1

4π

∫
R2

dk1y dk1z

3F(0, k1y, k1z)

8π

(k2
1y + k2

1z)
4

|k1z| = const. (104)

Findingφ33 is similar to findingφ11 in that the asymptotic expression forν → 0 is dominated by largeβ ’s. We find

φ33 = c33

ν1/3Ω2/3k
2/3
x

, (105)

wherec33 tends to a constant in the limitkx/k∗ → 0,

c33 = 3

4(2π)3

(∫ ∞

0
e−(2p3/3) dp

) ∫
R2

dk1y dk1z F (0, k1y, k1z) (k2
1y + k2

1zκ
2
32 − k1yk1zκ32)

∣∣∣
kx=0

. (106)

The remaining two components of the spectrum tensor,φ13 and φ23 are equal to 0 whenF(kx, ky, −kz) =
F(kx, ky, kz).

8. Conclusion

In this paper we presented a rigorous analytical theory of shear-flow turbulence forced by a weak small-scale
external forcing. The weakness and small-scale of the forcing allowed us to use scale-separation and RDT. The
model was closed by combining RDT for turbulence with the Reynolds-averaged equations for the mean flow.
Such an analytical theory is designed to provide exact reference solutions against which more general but less
rigorous phenomenological theories could be tested. In real shear-flow turbulence (e.g. near-wall turbulence) the
turbulence forcing outside of the viscous sublayer is provided by the continuous supply of vorticity propagating
into the outer regions as a result of intermittent bursts of coherent vortices generated inside the viscous sublayer.
In our formulation we decouple the turbulence description from such strongly nonlinear dynamics by considering
the turbulence forcing to be external. It is this decoupling that allows us to obtain rigorous analytical solutions and
study their dependence on the properties of the initial vorticity.

We found the conditions on the forcing under which one may expect the log-law solution for the mean velocity
profile. This happens if, in addition to being weak and small-scale, the initial vorticity is shortly correlated in time and
statistically uniform in space. Thus, we conclude that the mean profile is very sensitive to the properties of the initial
vorticity. For example, if the second correlator of the forcing is not constant, but is a power-law function of the distance
from the wall, then the mean profile is a power-law rather than the log-law. In particular, it can be of the scaling form
proposed by Barenblatt et al. [4–6]. Such a dependence of the forcing on the distance from the wall can be viewed as
incomplete mixing of the initial vorticity material (resulting from the sublayer bursts) over the overlap region. If not
well mixed, the initial vorticity is intermittent (i.e. not space filling). Barenblatt et al. suggested that vorticity inter-
mittence may be responsible for the violation of complete similarity in the overlap region which, in turn, can lead to
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the power-law mean velocity profiles [4–6]. Our results agree with this view and, moreover, we identify those statis-
tical properties of the initial vorticity which are essential for complete similarly and the log-law. Our results suggest
that these properties, i.e. the spatial uniformity and fast decay of the second correlator, should be examined using
DNS data. This can be done by tracking the vorticity generated in the viscous sublayer by marking it with passive
particles.

It is interesting that the experimental data Zagarola et al. [7,8] obtained for high-pressure pipe air flow suggest
the existence of two overlap regions, one of which has a power-law profile (for 50< y+ < 500) and another having
a logarithmic region (at 500< y+ andy < 0.1H ), where we have a power-law. It is therefore possible that the
initial vorticity is distributed differently over these two regions.

Our analytical results give interesting information about the role of viscosity outside of the viscous sublayer.
Recall that according to classical complete similarity viscosity has no effect on the averaged quantities in this
region. In contrast, we see that the main contribution to the turbulent shear stress,τc, has a very strong dependence
on viscosity in this region: it is inversely proportional toν for smallν. However, if the initial vorticity is uniform in
space thenτc is independent ofy and, therefore, it does not contribute to the mean flow dynamics. On the other hand,
the part of the turbulent shear stressτ that does contribute to the mean flow dynamics can be either independent
of ν (for symmetric forcing), or logarithmically dependent onν if the forcing is asymmetric. Dependence of the
turbulent stress on viscosity is not surprising given that according to RDT turbulence energy is growing because of
vortex stretching by the mean shear, and it is the viscous cut-off that determines the maximum turbulence amplitude.
As we saw, however, such a viscosity dependence does not preclude existence of the log profile. Note also that the
main contribution toτc andτa comes from very elongated streaks withky, kz � kx whereasτs is mostly generated
by isotropic scales,ky ∼ kz ∼ kx .

Note that some of the assumptions made in the present paper about the turbulence forcing (i.e. its uniformity and
short correlation time) are necessary for the log solution to exist, but they not important for the applicability of the
approach developed here. On the other hand, such assumptions as the weakness and small-scale of the turbulence
forcing are essential for the validity of RDT and the scale separation technique. In the introduction we presented an
intuitive argument for the assumption that the initial vorticity can be small-scale and weak, but a reliable conclusion
about validity of these assumptions (and the distances from the wall for which they are valid) can be obtained only
by further detailed experimental and numerical analysis of the vorticity field.

It is interesting that, as Kevlahan and Hunt [26] pointed out, RDT may be a valid approach even if the maximum
vorticity perturbation in turbulence is greater than the mean shear. Indeed, the maximum vorticity usually lies in
very small-scale perturbations which contain negligible energy and which do not contribute to the shear stress. In
other words, the vorticity field is “contaminated” by the very small scales that are strongly nonlinear (and have−5/3
energy spectrum), but they may be ignored as they do not feedback on the mean flow. Thus, it is only important
that the vorticity of the energy containing scales is smaller than the mean shear which is a much milder restriction
on validity of RDT. A similar argument applies to the scale separation: only the energy containing turbulent scales
need be separated from the mean flow scale.

The importance of the exact results obtained in the present paper is that they form the basis of a more general,
but less rigorous, model. Such a model is defined by a self-consistent choice of the turbulence forcing in such a
way that, if possible, the theory reproduces all the experimental dependencies measured to date (such as the mean
profiles, etc.). A model of this type is described in a separate publication [22] where we also show how to include
turbulent scales which are not well separated from the mean flow scale. Another, and perhaps more consistent, way to
develop such a model would be to measure the properties of the starting vorticity (and, therefore, turbulence forcing)
directly by tracking propagation of the sublayer generated vorticity into the overlap region. This is a challenging
task for laboratory experiment, but it is a tractable and well-defined problem to be tackled by DNS. Ideally, the
future theory of near-wall turbulence should include a model for the generation of the viscous sublayer vortices and
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their propagation into the overlap region, and, therefore, constitute a closed system for the turbulent region coupled
to the viscous sublayer dynamics.
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