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Abstract

A WKB method was recently used to extend rapid distortion theory (RDT) to initially inhomogeneous turbulence strained
by irrotational mean flows [S.V. Nazarenko, N. Kevlahan, B. Dubrulle, J. Fluid Mech. 390 (1999) 325]. This theory takes
into account the feedback of turbulence on the mean flow, and it was used by Nazarenko et al. to explain the effect of strain
reduction caused by turbulence observed by Andreotti et al. [B. Andreotti, S. Douady,Y. Couder, in: O. Boratav, A. Eden, A.
Erzan (Eds.), Turbulence Modeling and Vortex Dynamics, Proceedings of a Workshop held at Istanbul, Turkey, 2—6 September
1996, pp. 92-108]. In this paper, we develop a similar WKB RDT approach for shear flows. We restrict ourselves to problems
where the turbulence is small-scale with respect to the mean flow length-scale and turbulence vorticity is weak compared
to the mean shear. We show that the celebrated log-law of the wall exists as an exact analytical solution in our model if the
initial turbulence vorticity (debris of the near-wall vortices penetrating into the outer regions) is statistically homogeneous in
space and shortly correlated in time. We demonstrate that the main contribution to the shear stress comes from very small
turbulent scales which are close to the viscous cut-off and which are elongated in the stream-wise direction (streaks). We also
find that anisotropy of the initial turbulent vorticity changes the scaling of the shear stress, but leaves the log-law essentially
unchanged. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

There has been lively discussion in the literature over several years about whether near-wall turbulence has
complete similarity, the classical theory of von Karman [2] and Prandtl [3], or whether it has incomplete similarity,
as suggested by Barenblatt et al. [4—6]. The difference between these two cases is important because the former leads
to the prediction of a logarithmic mean velocity profile, whereas the latter results in a scaling law characterized by
a power-law profile. However, both approaches are based on dimensional analysis, rather than on a theory derived
directly from Navier—Stokes equations. They therefore can only be justified by comparison with experimental data
(and in some cases model parameters must be found by fitting the data).
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Inan attempt to resolve this controversy, Zagarola et al. [7,8] performed a new experiment in an air pipe under high
pressure (called the “Superpipe” ) which allowed them to reduce the kinematic viscosity by an order of magnitude
compared to the classical water pipe experiment of Nikuradze [17]. Based on their data, Zagarola et al. [7,8] argued
that there are two overlap regions in the velocity profile: the one closer to the wall has a power-law mean velocity,
while the other one follows by the log-law of the wall. Recent papers by Oberlack [9] showed that the underlying
symmetries of the Navier—Stokes equations permit power-law, logarithmic and even exponential profiles. George
et al. [10] generalized the scaling arguments and obtained a shifted log-law which fits the Superpipe data better
than the classical log-law. Meanwhile, Barenblatt et al. [4—6] continue to claim that their scaling power-law fits
the experimental data better than the log-law nearly everywhere outside of the viscous sublayer. Currently, direct
numerical simulations (DNS) of near-wall turbulence cannot be performed at Reynolds numbers large enough to
obtain a clear scaling for the overlap region [11].

It is becoming clear that further development of the theory is severely hindered by insufficient understanding
of the relevant physical processes. This lack of understanding stems from the absence of rigorous results on the
turbulence dynamics obtained directly from the Navier—Stokes equations. Indeed, even if valid only for special cases,
such results could provide a check on the assumptions used in less rigorous (but more general) phenomenological
theories. They would identify the physically important quantities to be measured in future experiments, and the
physical mechanisms that must be included in future phenomenological models. The derivation of such rigorous
results about near-wall turbulence directly from the Navier—Stokes equations is the main goal of the present paper.
Our analytical theory has three ingredients: rapid distortion theory (RDT), the Reynolds averaged mean flow
equations, and a model for the initial vorticity that provides turbulence forcing.

The first ingredient, RDT, has been a popular and powerful tool for describing shear-flow turbulence since the
work of Moffatt [13] who extended the RDT approach of Batchelor and Proudman [14] to the shear-flow geometry.
RDT has a long history, but we will only mention here those works that developed approaches similar to that used
in the present paper. Hunt [15] generalized RDT to inhomogeneous mean flows and Nazarenko et al. [1] further
generalized it to inhomogeneous turbulence using a WKB formalism based on the Gabor transform (GT). Similar
WKB approaches have been developed to describe local instabilities by Lifshitz and Hammeri [16].

The second ingredient, the Reynolds averaged equations, is the standard way of describing the dynamics of a
mean flow subjected to turbulent stresses. Our aim is to write the averaged turbulent stresses in this equation in
terms of the quantities used in RDT, and thus to obtain a closed coupled system of equations linking the mean flow
and the turbulence. Such a system was derived in the two-dimensional case by Dyachenko et al. [18}iariee
dynamics, and was used by Dubrulle and Nazarenko [19] to model two-dimensional Euler turbulence. Similar work
has been done for the three-dimensional case of nearly irrotational mean flows by Nazarenko et al. [1] who used GTs
of the velocity components to describe inhomogeneous turbulence and the turbulence stresses. In the present paper,
we will generalize the derivation of [1] to the case of arbitrary rotational mean flows, with shear-flow geometry
as a special case. It is interesting that the idea of coupling RDT and the Reynolds averaged mean flow equations
was present in the early work of Moffatt [13]. He derived equations for evolution of a nearly monochromatic wave
nonlinearly coupled to a background shear via the averaged Reynolds stress. Moffatt used Fourier transforms with,
perhaps, an intuitive understanding that these Fourier transforms depend on a slow coordinate of the inhomogeneous
mean flow. Although a WKB technique justifying such approach was not developed in that paper, all the physical
results obtained were essentially correct. A similar approach was used by Manin and Nazarenko [20] used to describe
nonlinear coupling between Rossby waves and a zonal shear-flow.

However, to describe turbulent shear flows one has to add yet another ingredientto ensure existence of a statistically
steady state, the turbulence forcing in the overlap region. This forcing is provided by an initial vorticity that penetrates
into the overlap region in the form of debris from coherent vortices generated in the viscous sublayer. The view
that near-wall turbulence is a linear driven system was introduced by Landahl [21] who also argued that turbulence
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forcing is produced by vorticity bursts originating in the viscous sublayer and which are intermittent in space and
time. We think that intermittence is important in this case because only nonlinear intermittent vortex structures
can move far from the wall, whereas, according to RDT, a weaker background vorticity is only transported by the
mean flow. Because the viscous sublayer is very thin compared to the overlap region these coherent structures have
a scale which is smaller than the characteristic scale of the mean flow in the overlap region. Also, it is natural to
think that the initial vorticity debris is weak far from the viscous sublayer because it is diluted in a large volume
of fluid. Thus, one can assume that the turbulence forcing is weak and small-scale, which allows one to use the
RDT approach and the scale separation technique. We will give more detail on the restrictions on the amplitude and
scale of the turbulence later. As we will see, the structure of the near-wall turbulence strongly depends on properties
of the turbulent forcing such as its statistical spatial uniformity and the decay rate of its correlations. Therefore,
the initial vorticity is an important quantity to be studied in future experiments and to be included in more general
phenomenological descriptions [22].

The ideas outlined above can be most easily illustrated using two-dimensional shear-flow turbulence as an example
[23]. This example is unrealistic for real applications but its algebra is much simpler than that of three-dimensional
RDT theory and it can be used as a quick introduction to the theory developed in the present paper.

2. Dynamics of turbulence

Let us consider a velocity field in three-dimensional space that consists of a strong large-scale mean component
U and weak small-scale fluctuatioms

velocity=U (x,t) + u(x, 1), (1)
U = (velocity), @
(u) =0, 3
L~U/IVU|> u/|Vu| ~ 1, (4)
U/L > u/l. (®)

Let us define the Gabor transform (GT)
itr k1) = [ £l —xoD @ uteo, 1) o, (6)

where 1>> €* > € and f(x) is a function which decreases rapidly at infinity, e.g. @xp?). Averaging(-) is
performed over the statistics of a random force which will be introduced below.
One can think of the GT as a local Fourier transform taken in a box centesedrat having a size which is
intermediate betweeh and!. The following properties of the GT will be important for our derivation.
1. The GT commutes with the time and space derivati#eandV. Commutativity withd, is obvious. Note that
the GT commutes witlv only for distances from the boundaries which are larger than the support of function
f.
2. The condition of scale separation (4) implies that the GT of small-scale field€ (e,&. ) is finite only for
k~2r/l> 2n/L).
3. The GT of large-scale fields (e.g.wofx, 7)) is exponentially small ir* for k ~ 27/1.
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4. The rule for taking the GT of derivatives is similar to the one for Fourier transforms in that
GT(Va) = ika + O(e*), 7

wherea is a small-scale quantity.
5. The inverse GT is simply an integration over all wavenumbers, e.qg.

1 . dk
ulx,t) = m/u(x,k,l‘)w. (8)

Let us substitute (1) into the Navier—Stokes equation,
WU +ou+ U -VVU+U -Vu+w-V)U+ u-Viu=—-Vp+o+vVU+vVu. (9)

Hereo = o (x, t) describes an external random forcing. In the case of near-wall turbulence, this term models the
vorticity seeding the outer layers due to the inner-layer vortex structures which break and penetrate into the outer
layers and serve as initial turbulence material. We now apply the GT to the above equatidn witr/l ~

1> 27/L ~ € and only retain terms up to first powerdrande* (we chose:* such thak* > € > (%)?). All
large-scale terms (the first and the third ones on the LHS and the third one on the RHS) give no contribution because
their GT is exponentially small according to property (3) above. Furthermore, the nonlinegutefu may be
neglected as it is small compared(io- V)U because of the assumption (5). As a result we have

dit + GT{U - Vyuy+ (@ - VIU = —ikp + 6 — vk?i. (10)

When finding the GT ofu - V)U we neglected the coordinate dependenc#,df,, because this term is already

small as @¢) and any corrections would be of second order. Also, we neglected the dederasrection to the
pressure term because, as we will see lgités,of ordere itself. We assumed thét = o(e), which is necessary in

order to achieve a stationary state. Finally, we neglected corrections to the viscosity term by assuming that viscosity
is of ordere or less. Let us now find

GTIW - Vi) = [ F(e"lx — o€ =0 U x0) - Vg uxo) o (11)

Taking into account thadfl (xo) varies slowly on distances of ordefet' (at which f decays) one can Taylor expand
it aroundxo = x. Retaining only the first two terms in the Taylor expansion (which corresponds to retaining only
O(e*) and greater), we have

GT{(u - Vu} = / f(e*x —xoD€* **O([U (x) 4 (x0 — x) - VU (x)] - Vio)u(x0) dxo
=U-VYa—VU -k) - Viia. (12)

When calculating the second term on the RHS of (12), we took into account ghat )€k *—*0) — jv, k- ®—xo) gnd
we integrated by parts, neglecting the derivativg because itis* times less than the derivative of explix —xo)].
Thus, (10) becomes

it + U -VYa—VU -k)- Ve + @ - VU = —ikp + & — vk, (13)
We now eliminatep by taking into account the incompressibility conditi®nu = 0, which, in terms of the GT, is

k-u+0O(*) =0. (14)
Multiplying (13) by k and taking into accourt- V(U - k) - Vi = —i - V(U - k) we have

’ .
5= k—;u VU k) — #(k .6). (15)
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As we seep = O(e*). Substitutingp into (13) we have

2k
Dﬁ+@-WU=zﬁ-WUkHﬁ¢—W%, (16)
where
N . k N
O’J_:O’—ﬁ(k-o’), (17)
and

D=8 +x-V+k- -V,

x=U=V;H, (18)
k=-Vk-U)=—-VH, (19)
H=U k. (20)

Eq. (16) provides an RDT description of turbulence generalized to the case when both the mean flow and the
turbulence are inhomogeneous. This equation has the form of a WKB-type transport equation, the characteristics
of which (rays) are described by Hamiltonian equations (18) and (19) with Hamiltonian function (20) having the
physical meaning of a Doppler shift [1,19]. It is applicable to an arbitrary (slowly varying) mean flow that may
contain both vorticity and strain in any proportion. In the special case where the mean flow is irrotational (pure
strain) Eq. (16) coincides with the WKB RDT equation derived in [1].

In this paper, we are interested in a shear-flow geometry, s&/teat U (y, t), 0, 0). In this case, (16) reduces to

aﬁ—@mgz—gg@@+ﬁL—w%, (21)
where

Dy =3 + Udy + ki o, (22)
ands$2 = —d,U is the mean flow vorticity.

3. Dynamics of the mean flow

In order to derive a mean flow equation one has to filter out the small scales from the Navier—Stokes equations
(9) by ensemble averaging over the statistics of the random foecikuping the component form for convenience,
we have

O Ui + (U - VUi + Oy (uiny) = =3y, P+ vV2U;, (23)

whereP = (p). The nonlinear term,, (u;u;), although small in general, can be the dominant term in the mean

flow dynamics. In particular, this is the case for shear flows, where the large-scale self-inteildctvdyU; is zero

because of the parallel geometry, and even small turbulent stresses can lead to significant changes in the mean profile
over long times. Eq. (23) is analogous to the equation derived for the large-scale flow by Nazarenko et al. [1] who
considered the dynamics of a turbulent spot in an initially irrotational mean flow. The only difference compared to

[1] is that in the present paper the averaging is performed over the statistics of a random force, whereas in [1] the
large-scale equation was obtained via a space averaging using thg4iiéx).
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For the shear-flow geometay= (U(y), 0, 0), (23) becomes
U = —dyT — 3 P+ vd3 U, (24)

wherer = (u1u2) is the turbulent shear stress. This is the standard equation used for description of turbulent shear
flows. They andz components of the mean flow are not generated by turbulent stresses if the foissigtistically
symmetric with respect — —z, as we will see later.

4. Solution for (u;u;)

Let us use property (5) of the GT to rewrite the averaged Reynolds strassgsas follows:

1 R .
(ujug) = F20)2n)° /(ui(X,k/, i (x, k", 1)) dk" dk”. (25)
Here we have to substitufe found by solving the RDT (16) (21 in case of the shear-flow geometry). Because Eq.
(16) is linear, one can write its solution in the following form:

ﬁi(x, k,t) = / g,-j(x, k,t; x’, k/, t/) 6J_j(x/, k/, t/) dx’dk’dt’, (26)
whereg;; is the Green'’s function. Substituting this expression into (25) we have
(u-u1)=;/g--(x k' t:x1, k1, t1)gim(x, k", 1:x2, k2, 12)
1 fZ(O)(Zr[)G ] k) s by ’ ) m ) s by k) k]
x(61j(x1, k1, 11)61m(x2, k2, 12)) dx1 dkq dry dxo dko drp dk’ dk”. (27)

Using the definition of the GT we have

(61 (1 k1, 11)6 1 (2, k2, 12)) = / F(e¥ s —x')) f(€¥|xg — x|y gy Fa=x) Hikz Gra=x")
x (o1 j(x', 11)o1m(x”, 12)) dx’ dx”
_ / P xy — xR E Itk D 4 e de’ dr
= (21)° f2(e*|x1 — x21/2)8 (k1 + k2) €2 F2 XV A, (kp, £), (28)
where¢ =1 — 11, r =x" —x’ and
Ajm(r, &) = (01;(x', 1)o1m(x", 12)) = (01;(0,00 1,u(r, §)) (29)

is the second correlator of the random forcing, which is assumed to be homogeneous in space and time (later we
will also touch upon the case of forcing which is inhomogeneous in space). Further,

Ajp(k, &) = f Ajp(r, £)e*T dr (30)

is the Fourier transform of the second correlatgy,. When deriving (28) we took into account that, (r, £)
decays faster in than f does (we puk’ = x” in f). In other words, we assumed that the forcing is small-scale so
thatﬁjm(k, &) is concentrated &t >> 27 /L. We also took into account thgtis a slow function compared to the
complex exponential and therefoté1 + k») appears after integration ovet.
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Substituting (28) into (27) we have

1 .
(uiug) = @03720) / F2(e* X1 —x21/2) gij (K, 1531, k1, 1) gim (0, K, 13 X2, ko, 1y + &)k F27x0)
X A j(ka, £) dxq dry dxo dko dé dk’ dk”. (31)

In case of the shear-flow geometry, we have to find the Green’s function ok{2®), k, t; x1, k1, 11), as a solution
of the homogeneous equation

2k;
01 8ij + Udxgij + $2k1 0k, 8ij — 81 828ij = k—zl $2 g2jky — vK?gi; (32)

with initial conditions
8ijli=n, = 8ij8(x —x1)8(k —k1). (33)

But solving this problem is similar to finding the classical RDT solution for constant shear of a monochromatic
wave withk = k1 atr = #1. The only difference is that we now consider a localized wavepacket which is advected
by the mean flow. Thus, it is easy to see that

gij(x.k,t;x1,k1,11) =kij DS(x —x1 — U&1)S(y — y1)8(z — 21)8 (kx — k1x)
x8(ky — k1y — $2 k1x§1)8(k; — k1z), (34)
whereé1 =t — 11, D is a viscosity factor,
D = exp[-2vé1 (k3 + Qk1E1k1y + 22622 /3)] (35)

and the matrix;; is the same as for the constant-shear RDT solution [13],

k2| k2 kyky
1 G 0
K2 Hkxkh T2

2

ki ol, (36)
k2

k.k? kiky
0 0+ — 1
5 [[ T2

kij=10

where
kh
— Jp24 2 — =
kp =\ k& + k2, 6 = arctanky.
Here, the double square brackets mean taking the difference of valuasdai, for example [p]] = 0 (k) — 0 (k7).
Substituting (34) in (31) and integrating using the delta functions, we have
! T4 . de [ dkqf3(e* k k
(wjug) = mfo Slf_oo E/RS 1f (€7 UEN/Dkijka, 281)kim(—k1, $2(8§1 — §))
x D e_iklesAAjm(klv g) (37)
Note thatc;; depends on the coordinate and time only via combinalion)£, a fact that willbecome important later.

In most realistic situations the small-scale forcing correlatign(k, £) decays in time faster than the characteristic
large-scale time AS2. In this case

1 o -
(ujug) = —3/ d«?l/ dk1 kij(k1, 2E1)kim(—k1, $281) D Ay (k1, —k1, U), (38)
(2r)° Jo R3
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whereA j,, (k, w) is the Fourier transform aff2(e*|U&|/2)/2(0)) A . (k, &) with respect to timé,

~, FHENUEID) e
Aty = [ L2212 g e Ak 6y . (39)

In the case when the forcing correlation time is smaller than the small-scale tithe. ve have
Ajm = / Ajm(k, &) dg, (40)

so thatA ;,, is independent of the second (frequency) variable and, thereig;;g(k, —k1,U) = Ajm(k) is inde-
pendent of/ (y). In this case, the turbulent Reynolds stresses;) depend on the coordinate only \§a which,

as we shall see later, is crucial for existence of the log solutiof/fgn and for some important properties of the
spectra. In the following we restrict our attention to this case, leaving other possibilities to another article [22].
Further, we assume the wavenumber dependenég,pto be of the following standard form:

3F (k)
8

If, in addition, functionF depends only on the absolute valuekdhen (41) corresponds to an isotropic forcing of
turbulence [13,14] (which we are not going to assume).

Aij(k) = === (k%8 — kik;), (41)

5. Turbulent shear stresst

We start by calculating = (u1u2), the component of the turbulent Reynolds stress tensor which determines the
mean flow dynamics of the shear-flow,

4 [ g% 0% 3Rk
-5 fo d fo dha | iy /O ks > 2 Dezaky, 26)

x[(kZ — k2 Yr1o(—k1, 28) — kickiyk1a(—k1, 28)]

4 3F(k
= (2;1)3/ dé/ dklx/ dkly/ dky, - 1)exp[—2v§(kl+9klxgklv+92k £2/3)]

k2 k2 k? kyk
1 2 271 b4 x*y

kT — k1 0+ kick . 42

Xk2 <( 1 )kizz |:|:khkx k? Ly (42)

Here, we took into account the symmetry of the integrand with respéctto—k (sinceF (—k) = F (k) because
the original forcing termy is a real function). Thus, we need only integratdrom 0 tooco and double the result.
For simplicity we also assumed thBtis symmetric with respect tb, — —k;.

Let us change variables

(&, ki, kiy, ki:} —> (h = —Qke&, ky = \JK2, + kL. ky. s = k1e/kn). (43)

Without loss of generality, we assume tliat> 0. Taking into account that the Jacobian associated with this change
of variables is 1£2s+/1 — s2, we have

1 o0 0 o) 1 ds
= _/ dkh/ dh/ dky/ —G(s, kp, h, ky)e /5, (44)
2 Jo —00 —00 0 52 i

where
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G= %F(khs, ky +h. knv/1— 52) fg‘(yk;f)];) {kﬁ + (i% T 22 4k + D)
x {(1 — 59 <arctank—h - arctank—h> + kys? ( ky ___ kA+h )}
ky ky +h K2+ k2 K2+ (ky + h)2
ks + h)} , (45)
and
o= —%h(k§+k§+hky+h2/3)/kh. (46)

(Note thate > 0.) One can see that even very small viscosity cannot be neglected here, that is one cannot put
e %/s = 1 in the integrand because the factgsdwould give rise to a divergence at= 0. In order to find the
asymptotic expression farfor small viscosities, we split the integral oweas follows:

1ds e
/ —G(s)e S = I1 + Ip + I, (47)
[
where
Lds / —a/s
11=/ —(G(s) — G(0) — sG'(0)) €7/, (48)
0o S
1
L =GO / & s - €O (49)
[ o
lds
I3 =G'0) / — e =G (O)Ei(-a), (50)
0

where E{x) is the exponential-integral function [24] axd#(0) denotes the derivative @ with respect ta taken
ats = 0. The expressiofG (s) — G(0) — sG’(0))/s2 is not singular ak = 0 and one can put@/* = 1 in the
integrand off; in the limitv — 0O,

Lds ,
I = /0 S—Z(G(s) — G(0) —sG'(0)). (51)
Also, forv — 0 one can use the asymptotic expression féwEata — 0 [24] and write,
I3 = G'(0)(C + loga + O(a)), (52)

whereC is Euler’s constant. One can see thagives the largest contribution to On the other hand, this contribution

is independent of (due to a cancellation a’s) and therefore does not contribute to the mean flow Eq. (24). Note
that this property is very sensitive to the assumptions made about the turbulence forcifigneydgive the main
contribution to the mean flow dynamics if the second correlator of the foscterays slowly in time or if it depends
ony. In our case, the main contributiont@omes from the log termifg if G’(0) # 0, that is if the correlator of the
turbulence forcing is asymmetric indirection,dx, F |x,—o # 0. For the symmetric casg’(0) = 9y Flx,—0 = O

and the main contribution te comes from/;. Summarizing, one can write as a sum of three terms: a constant
¢ (independent of), an asymmetric contributioty, and a symmetric terras. The turbulent shear stress is thus
expressed,

T=Tc+Tat+Ts, (53)
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where
1 0 0 0
o= — / dk, / dn / dkyG(0) /e, (54)
22 Jo —00 —00
A vk?2
Ta = §a|0 Q* s (55)
A
Ts = 5, (56)
) 0 0
ra= / dky, / dh / dk, G’ (0), (57)
0 —0o0 —00
[e'e) 0 00 1 ds
= [Ca [ [ de [ S6o-con. (58)
0 —00 —o0 0o s
G(0) = F(0,ky +h, ki) y, (59)
F ky+h, k
G/(O) _ OF (ky, a;{"‘ s kn) kny, (60)
x k=0
k2 ke h 2,3
y = 3 (it Gy +1)7) (arctank—h —~ arctank—h). (61)
@m)* (kf + kD) %k ky ky +h

Note that wherG’(0) # 0, termzs must be ignored because in this case it is of the same order as small corrections
to 7o which are already neglected in (57). Tetgis only important wherG’(0) = 0; thus we putG’(0) = 0in (58).

Note that the sign af,, and therefore the sign ef, depends on the sign & (0), i.e. on the way of asymmetry of

the turbulence forcing.

6. Stationary mean flow profile
6.1. Qualitative properties of mean flow profile

The evolution of the mean flow is determined by (24), which is quite general, independent of the actual model
(in our case, RDT) used to calculate the turbulent shear strédse RHS of (24) is the negative divergence of the
x-momentum flux (also called the total shear stress). Taken at the wajl;abmponent of this flux, i.er + v$2,
is equal to the friction force per unit area. The friction force is usually writtewﬁa/shereu* is called the friction
velocity. For stationary mean flow (24) implies

T+v2=—(y—H/2) 3, P =(1—2y/H)u?, (62)

where we measure as the distance from one of the walls and we took into account the fact that the total shear
stress must be zero in the center of the channel,-atH /2. Because we restricted ourselves to the ¢ase 0,
we haveU < 0 andd, P > O (which agrees witld, P = 2u2/H).

Let us now mention some general properties of the turbulent straed the mean profile that follow from our
model. If T is given by (53)—(56) then the vorticity of the stationary mean flow must be a monotonic function
of y. Indeed,$2(y) is not allowed to have a local maximum or minimum because the inverse funatfehis
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0 y4+=30 y=H/2

Fig. 1. Sketch of a typical experimentally measured balance between the turbulent sinelsgiscous shear stres.

uniquely defined via (62). In other words, the stationary mean velocity profile cannot have any inflection points and
is, therefore, linearly stable.

The turbulent stress dominates the viscous stress?, everywhere except for a narrow layer near the wall. A
typical experimentally measured balance between the turbulent stegg$viscous shear stres® is illustrated
in Fig. 1. Note that = 0 at the wall and it has a maximum at ~ 30, wherey, = yu,/v. The assumptions
we made about the weakness of the turbulence forcing and its uniformity are not likely to be valid in the narrow
near-wall regiony;. < 30 which is dominated by strong coherent vortices; it only makes sense to apply our model
to the regiony; > 30. Fory; > 30 the turbulent stress= 0 tends to a linear function

= (1—2y/H)u? (63)
Fory « H we have
T=Tc= MZ. (64)

*

This follows from the condition that the vorticity profile must be singular at the wa# 0 for viscosity to be
important when approaching the inner layer> 0. However, when measured in inner variables such a singularity
is allowed to be several viscous lengths off the wall, i.eat= a ~ v/u,. The constant can only be found if the
inner profile is known (our RDT approach is not applicable there). We will discuss later some consequences of this
uncertainty for the mean velocity profile.

Relation (64) represents an integral condition on the level of the turbulence ferairte statistically stationary
state because such a forcing is the only dynamical quantity that enters into the expressio\feo, because
7c « 1/v, o is small for small viscosity, which means RDT is a good description of turbulence in this case. Note
that in reality the turbulence forcing is provided by the initial vorticity generated in the viscous sublayer and there
is a self-consistent mechanism that adjusts its level to the value necessary to achieve a statistically stationary state.
Note that according to (64} must be positive; this condition will be an important test for our theory.

Now consider the simplest case, when the turbulence forcing is symmetric se,that0. In this case the
stationary mean profile is to be found from (63) and (56),

hs
3,U

which gives

=2y ui/H, (65)

MsH
U(y) = = logy + const (66)
2u?
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Note that according to (65)s must be negative. This is an important condition for the stationary state to exist, and
it will be shown to be satisfied in the next section.
In practical situations the turbulence forcing is likely to be asymmetric. In thisgse rs and we have
ra, vk?

Elog— = —2yu?/H. (67)

The constanf.y can be either positive or negative depending on forcing asymmetry, see (57) and Section 6.2.
However, according to (67) (taking into accout> 0 and(vk?)/(£2) < 1) a stationary state is only possible
if Aa > 0, so one should expect positi¥g in experiments. Later we will see thaj > 0 does correspond to the
orientation of the streaks observed in experiments, which means that the real turbulence forcing adjusts itself in
such a way that the stationary state is possible.

Let us introduce notatio, = A,H /2vk2u?. Taking into account (64) we see thatis a distance which is of
order of the channel widtl/ . Solving (67) for.Q by one iteration we have

L.y
2 = —vk?=log=. 68
vkeSloor (68)
Integrating this equation we have the following mean velocity profile,
1
U(y) = —vkzL log?2 T+ const (69)

As usual, the constant has to be found by matching to the solution in the viscous sublayer, which we cannot do
reliably using the present model. In fact, one can show that the relation (69) also gives a log-law dependence in
some intermediate range of the coordinates. Indeed, one can rewrite (69) as

U(y) = —vkzL (Iog —lo gz%) -5 kzLIogyy0 Iog— (70)
where constantg corresponds to the coordinate where the inviscid lpgpfile becomes zero, and is therefore
located near the viscous sublaygy,~ v/u,. Foryp < y <« L we have

U(y) = }vkzL Iog—log— (71)

Thus, we see that in the intermediate rapgex y < L the velocity profile is logarithmic.

As we discussed before, our model is not applicable to the regior: 30 which is dominated by strongly
nonlinear vortex structures. On the other hand, Eq. (62) can be solved easily for the entire rarigeluding
v+ < 30, and some interesting observations result from matching the resulting profile to the no-slip boundary
condition at the wall. For simplicity, let us again consider the symmetric caseryvithQ. In this case, the solution
of (62) satisfying the boundary conditidnh(0) = O is

2.2 2 4,2 /1,2

usy y AsH ufly/2Hv + 2\/uiy®/h* + vis
Uy) = — =% = Juty2/H2 4 v} log —* - . 72
D ==2m T2 / +”s+22 °d 2/vs (72

which in the limit of small and large distances from the wall gives

U= 2,/ y for y?2 « VASHZ/M*, (73)

AsH 2u?y

U=—lo
2u2 d H\/vig

for y2 < visH?/u?. (74)
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For comparison, let us write the log-law of the wall in its usual form,

1
U/u, = —logy+ + B. (75)
K

Our profile (75) involves the parameteywhich depends on the properties of the turbulence forcing and is not fixed

in our model. However, one may impose a condition thetas to be such that the pre-log coefficients in (74) and
(75) coincide. Taking (as in the Superpipe experiment [7,8]) the von Karman corstaft44 and the Reynolds
numberR, = u,H/v = 851 we haveB ~ 8.6. This result is in a reasonable agreement with the experimentally
measured valug =~ 6.5. Again, such a comparison should be made with caution because our model is not designed
to apply to the viscous sublayer. In addition, as we mentioned above, our outer solution can only be found with
accuracy up to an arbitrary coordinate offgetf the order of several viscous lengths, which implies that we cannot
distinguish between the classical log-law (75) and a shifted log profile

1
Ulu, = ;log(er—i—a)—l—B. (76)

Profile (76) was proposed by George et al. [10] based on a refined scaling argument, and it is quite likely that such
a profile describes the near-wall turbulence better than (75).

We would like to emphasize that the logarithmic velocity profile was obtained in this section under several crucial
assumptions, one of which being the spatial uniformity of the turbulence forcing. In fact, the existence of the log
solution is very sensitive to this particular assumption. Indeed, if the strength of the forcing depends the distance
from the wall then the coefficients; andi, will be functions ofy. For example, if we assumig « y” then the log
solution (66) will be replaced by a power-law solution. Power-law velocity profiles have been recently suggested
as a better description of the near-wall turbulence by Barenblatt et al. [4—6]. Such profiles have also been obtained
using a symmetry argument by Oberlack [9]. Our analytical study shows that the realizability of the logarithmic
and algebraic profiles depends strongly on the properties of the initial vorticity. Thus, to make a reliable conclusion
in favor of the logarithmic or the algebraic profile one has to analyze the initial vorticity, e.g. by using DNS data. In
addition to the statistical uniformity of the initial vorticity, these properties include its weakness and the fast decay
in time of its second correlator.

6.2. Evaluation of model constants

Inthe previous section we examined qualitatively the shape of the mean flow profile, but did not explicitly evaluate
the model constantss, tc, Aa. These constants depend on the forcing, and in this section we evaluate them for
particular forcing models.

We first consider the (rather unphysical) case of symmetric forcing, where the dominant tetrmithis case
we choose the following symmetric forcing:

k2 2,,2
F(k) = Fk—zexp(—k /k2) (I' = const> 0), 77)
*
which behaves lik&* ask — 0 (wherek = |k|) and decays exponentially for large Substituting this forcing
in (58) gives a multidimensional integral which can only be evaluated analyticatly. inhe integrals in the other
three dimensions have been evaluated numerically using adaptive numerical quadrature to give

As = —6.8354x 103 " k2. (78)

Note that the constant is negative, as required for existence of the stationary state. The.s&hoafd not depend
on the precise form of the forcing (although its magnitude will).
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Next, we consider an asymmetric forcing. This case is more physical, since the forcing in a shear-flow is likely
to be asymmetric. We choose a forcing analogous to the symmetric forcing,

k4
Flky, ky k;) = Fk—Zexp{— [%az(kx — k)2 + Lk + k)2 + kf] /kf} (I' = const> 0). (79)
*
Note that this forcing corresponds to an ellipse inkhe- k, plane with its major axis at45 (—45)ifa <1
(a > 1).Asa — 0 (a — o0)the eccentricity of the ellipse increases (the forcing becomes increasingly asymmetric).
Note that the 48angle does correspond to the streaks observed in shear layers. In this case the integrals in (57) can
be done entirely analytically, giving

¥ (1-d?
— 2527)2 (14 a?)?
whereb? = %(a2 + 1). It is interesting to note that & < 1 theniy > 0, while if « > 1 theniy < 0. As

we mentioned in the previous section, a stationary solution is possible only for negatikis selects the type

of anisotropy that agrees with experimentally observed orientation of the streaks. This fact not only supports our

theory, but it also identifies the mechanism that selects the orientation of the streaks in the statistically stationary
state. In the limit of large eccentricities one finds

Aa [16(b° 4 b* + b2 + 1) + 5b(b* + 1) + 6b°] I k2, (80)

*a 3 001425+ 0 (1) if a>1 (81)
A — = —0. = a )
Ik 24(2m)? a
ra 3? 37 o
=~ _(30+3V2)=026+0 if 1. 82
s 25(271)2( +8«/_) + O(a®) a < (82)

The final constant to be investigatedisthe part of the shear stress independent daking the asymmetric forcing
(79) we find that the integral iky, can be done analytically, but the other two must be calculated numerically. When
this is done we find that; is always positive and

TcV

_F kf —-0 as a— o0, (83)
Y 53436x 10 as a— 0. (84)
I k2

The predictionce > 0 agrees with condition (64), which means that the turbulent shear stress must always have the
same sign as the viscous stress. This arises beeatssers, t4 for smallv.

Our theory also predicts particular scalings of the forcing seabnd its intensity as a function of the Reynolds
numberR, = u,H/v and the channel widtl/. Indeed, according to the above formulae and condition (64) we
have

ka/v ~ ui (85)
On the other hand, comparison of (66) with (75) and taking into account (78) gives

Tk*H ~ul. (86)
These two relations give the following prediction for the forcing scale

kyH ~ \/R,. (87)

Taking into account thak, >> 1 we see that the forcing scale is much less than the channel width which is another
justification for the scale separation assumption used in this paper.
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Let us assume that starting vorticityis injected at the rate determined by the characteristic mean flow fisge 1
so thatF ~ I' ~ w?82. Taking into account that in the logarithmic lay@r ~ u./y and solving forl" from (85)
and (86) we have

=5~ /PR (88)

Taking into account that the log region liesyakc 0.1H and thatR, > 1 we see that the initial vorticity is much
less than the mean flow vorticity, which justifies the RDT used in this paper.

In this section we have given some indication of the properties a self-consistent forcing should have. This topic
will be addressed in more detail in a forthcoming article [22].

7. Spectra

The one-dimensional energy speatfak,, y) are quantities frequently measured in experiment. They are defined
in such a way that

dk,
(ujuj) = /¢ij(kx’)’)z- (89)
Using (38) and (41) we have
3F (kl)

1 o0
Buths ) = o [ [ s, dhciy k. 260 (s. 26) D200 —hajhn). (90)
(2m)% Jo R2

For ¢11(ky, y) we have

1 3F(k
P11= W/ dgf dky dkq, 8( 1 [Kll(kly +kZ) — 2ucrok11k1ckay + kEok?]

d,B _dka, dk (kl) K2 +k2+ﬁA2—2k k ﬁA
(2n)2k9 L e [y TR T 2 ko5

h h

v o 2

xexp| —2—— (k5 + Bkiy + B°/3) |, (91)
Rk,

where
k2 k kek k2 kn  kek
A= —* arctan—"— + 2 - = arctan—- — ley , (92)
kykp, kiy + B k kykp, k1y kf

andp = $2k.&. Note that the main contribution to this integral comes frofn ~ k1, ~ k., wherek, is the
characteristic wavenumber of the forcifig We are interested in the limit of small viscosities,

VL 2k /K3, (93)

In this case the main contribution to the integrabin comes fromB > k., so that

4 2 2
3F(k1) K (k ki kxk1y>

b= )2k — / d / dhsy dhae =g | K, K+ 33 +

kkn ki k2
k2 [ k2 kn  kykiy 2vp3
—2k1,k arctan— - exp| — . 94
Ix 1yk2 (k k kly + k% p|: 3Qkx] ( )
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Integrating oveB we have
B

where
B 3 / ooe—<21’3/3>d / dkyy dk1, F (k1) | K2, + K2 + K (& arctank—h + kikyy
427)3k22 Jo P g o T LT g2\ kek, ki K
k2 [ k2 ky  keka
—2kykyy 2+ | = arctan—% + 2222 ) | 96
LeK1y kf (kxkh k1, ka_ (96)

One can see that 1(k,, y) depends oty via £2 in a universal way. In the log regia2 oc 1/y so thatp11(ky, y)
y?/3. The dependence @ 1(k., y) onk, is universal for the wavenumber range< k., in which case

_m -8/3
¢1l - U1/392/3 kx k) (97)
where
o0
_ —(2p%/3) 2 2.2 k1,
- e d dk1y dk1. F (0, k1y, k1) (K2, + k%) arctarf —. 98
c11 4(2n)3f0 p/R2 1y dk1. F (O, k1y, k12) (kT + k7,) kL, (98)

¢11 is a spectrum that is often measured in experiments. Typically it behavel@jl’rkat low wavenumbers and
k;5/3 for higherk, [25], and both of these scalings are different from kﬁg/g obtained here. Note that in the
two-dimensional case our theory does predigtoc k72, see [23], which may indicate that in reality the turbulence
in the k! region is effectively two-dimensional. However, one has to be cautious when interpreting our result in
terms of the experiments because our theory is not applicable in thekangé/y and below, which is where the
experimental data is usually obtained [25]. This is because in the present paper we ignored the turbulence blocking
effect which becomes important &t ~ 1/y [15]. Inclusion of the turbulence blocking effect is an interesting
subject for future research.

The situation with spectra measured in DNS is quite different. The small-scale one-dimensional spectra are indeed
measured in DNS, but they turn out to be much steeper thakgﬁ{g spectrum [11,12]. This difference may be
due to numerical dissipation at high due to the insufficient Reynolds numbers of current DNS.

To calculatepi2(k,, y) we note that in this case the integral converges even if we pti0, so that in the limit
of small viscosities dissipation fact@ should be ignored. We have

1 o oo ©  3F(ky) K2 2 2 K
= d dk dk kT — kT )—=A — k1yk1y | . 99
912 <2n)3s2kx/o P [w ”/,oo 58 oy 4 g2y a2 | T A T ©9)

Again, the dependence ¢f2(ky, y) on £2(y) is universalgia(ky, y) o« 1/82, which impliesg12(k,, y) o y in the
log range. Dependence @n is universal fork, < ks,

c12
- < 100
$12 2Kz (100)

where the constant, is

1 [® [ 0 3F(0, kiy, k (k2 +k3)3
12=—5—3 / dg / dk1y / dk1, © by, k1o) Ly > L -
(27)° Jo —00 —00 8 ((kly + B)c+ klz)klz

k k
X (arctani - arctanﬁ) ) (101)
t+B k1y
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To find ¢22 we note that viscosity is unimportant and can be set equal to zero in this case too. We have

1 o 3F (k1) kf , 1 3F (ky) k7
S — d dkq, dk dk1, dk —, (102
922 (2n)29kx/0 ﬂfRz D T (kP2 kD2 Man 2k S DY 8 (102)
so that
bop — !C;kz for ky/ks — O, (103)
X
where
1 3F(0, kyy, k1) (K, + kE)*
6222—/ dkq, dkq, © k1y, kaz) Ty L = const (104)
At Jp2 8r |k,

Finding¢sz is similar to findinggs 1 in that the asymptotic expression fior~ 0 is dominated by largg’s. We find

€33
- %% 1
¢33 p2ZR (105)
wherecss tends to a constant in the limit / k., — O,
o0
—(2p3/3 2 2 2
33 = w (/(; e @r7/ )dp) /1;2 dkly dk1, F (O, k1y, k1z) (kly + k K3p — k1yki:k32) s (106)

The remaining two components of the spectrum tenges,and ¢»3 are equal to 0 wherF (ky, ky, —k;) =
Fky, ky, k7).

8. Conclusion

In this paper we presented a rigorous analytical theory of shear-flow turbulence forced by a weak small-scale
external forcing. The weakness and small-scale of the forcing allowed us to use scale-separation and RDT. The
model was closed by combining RDT for turbulence with the Reynolds-averaged equations for the mean flow.
Such an analytical theory is designed to provide exact reference solutions against which more general but less
rigorous phenomenological theories could be tested. In real shear-flow turbulence (e.g. near-wall turbulence) the
turbulence forcing outside of the viscous sublayer is provided by the continuous supply of vorticity propagating
into the outer regions as a result of intermittent bursts of coherent vortices generated inside the viscous sublayer.
In our formulation we decouple the turbulence description from such strongly nonlinear dynamics by considering
the turbulence forcing to be external. It is this decoupling that allows us to obtain rigorous analytical solutions and
study their dependence on the properties of the initial vorticity.

We found the conditions on the forcing under which one may expect the log-law solution for the mean velocity
profile. This happensif, in addition to being weak and small-scale, the initial vorticity is shortly correlated in time and
statistically uniform in space. Thus, we conclude that the mean profile is very sensitive to the properties of the initial
vorticity. Forexample, if the second correlator of the forcing is not constant, butis a power-law function of the distance
from the wall, then the mean profile is a power-law rather than the log-law. In particular, it can be of the scaling form
proposed by Barenblatt et al. [4-6]. Such a dependence of the forcing on the distance from the wall can be viewed as
incomplete mixing of the initial vorticity material (resulting from the sublayer bursts) over the overlap region. If not
well mixed, the initial vorticity is intermittent (i.e. not space filling). Barenblatt et al. suggested that vorticity inter-
mittence may be responsible for the violation of complete similarity in the overlap region which, in turn, can lead to
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the power-law mean velocity profiles [4—6]. Our results agree with this view and, moreover, we identify those statis-
tical properties of the initial vorticity which are essential for complete similarly and the log-law. Our results suggest
that these properties, i.e. the spatial uniformity and fast decay of the second correlator, should be examined using
DNS data. This can be done by tracking the vorticity generated in the viscous sublayer by marking it with passive
particles.

It is interesting that the experimental data Zagarola et al. [7,8] obtained for high-pressure pipe air flow suggest
the existence of two overlap regions, one of which has a power-law profile (far 80 < 500) and another having
a logarithmic region (at 50& y;, andy < 0.1H), where we have a power-law. It is therefore possible that the
initial vorticity is distributed differently over these two regions.

Our analytical results give interesting information about the role of viscosity outside of the viscous sublayer.
Recall that according to classical complete similarity viscosity has no effect on the averaged quantities in this
region. In contrast, we see that the main contribution to the turbulent shear giréss a very strong dependence
on viscosity in this region: it is inversely proportionahtdor smallv. However, if the initial vorticity is uniform in
space then. is independent of and, therefore, it does not contribute to the mean flow dynamics. On the other hand,
the part of the turbulent shear strasthat does contribute to the mean flow dynamics can be either independent
of v (for symmetric forcing), or logarithmically dependent oiif the forcing is asymmetric. Dependence of the
turbulent stress on viscosity is not surprising given that according to RDT turbulence energy is growing because of
vortex stretching by the mean shear, and itis the viscous cut-off that determines the maximum turbulence amplitude.
As we saw, however, such a viscosity dependence does not preclude existence of the log profile. Note also that the
main contribution tarc andz, comes from very elongated streaks with &, > k, whereags is mostly generated
by isotropic scalessy, ~ k, ~ k.

Note that some of the assumptions made in the present paper about the turbulence forcing (i.e. its uniformity and
short correlation time) are necessary for the log solution to exist, but they not important for the applicability of the
approach developed here. On the other hand, such assumptions as the weakness and small-scale of the turbulence
forcing are essential for the validity of RDT and the scale separation technique. In the introduction we presented an
intuitive argument for the assumption that the initial vorticity can be small-scale and weak, but a reliable conclusion
about validity of these assumptions (and the distances from the wall for which they are valid) can be obtained only
by further detailed experimental and numerical analysis of the vorticity field.

Itis interesting that, as Kevlahan and Hunt [26] pointed out, RDT may be a valid approach even if the maximum
vorticity perturbation in turbulence is greater than the mean shear. Indeed, the maximum vorticity usually lies in
very small-scale perturbations which contain negligible energy and which do not contribute to the shear stress. In
other words, the vorticity field is “contaminated” by the very small scales that are strongly nonlinear (arcbiave
energy spectrum), but they may be ignored as they do not feedback on the mean flow. Thus, it is only important
that the vorticity of the energy containing scales is smaller than the mean shear which is a much milder restriction
on validity of RDT. A similar argument applies to the scale separation: only the energy containing turbulent scales
need be separated from the mean flow scale.

The importance of the exact results obtained in the present paper is that they form the basis of a more general,
but less rigorous, model. Such a model is defined by a self-consistent choice of the turbulence forcing in such a
way that, if possible, the theory reproduces all the experimental dependencies measured to date (such as the mean
profiles, etc.). A model of this type is described in a separate publication [22] where we also show how to include
turbulent scales which are not well separated from the mean flow scale. Another, and perhaps more consistent, way to
develop such a model would be to measure the properties of the starting vorticity (and, therefore, turbulence forcing)
directly by tracking propagation of the sublayer generated vorticity into the overlap region. This is a challenging
task for laboratory experiment, but it is a tractable and well-defined problem to be tackled by DNS. Ideally, the
future theory of near-wall turbulence should include a model for the generation of the viscous sublayer vortices and
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their propagation into the overlap region, and, therefore, constitute a closed system for the turbulent region coupled
to the viscous sublayer dynamics.
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