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Abstract We revise the theory of superfluid turbulence near the absolute zero of
temperature and suggest a differential approximation model for the energy fluxes
in the k-space, εHD(k) and εKW(k), carried, respectively, by the collective hydro-
dynamic (HD) motions of quantized vortex lines and by their individual uncorre-
lated motions known as Kelvin waves (KW). The model predicts energy spectra of
the HD and the KW components of the system, EHD(k) and EKW(k), which experi-
ence a smooth crossover between different regimes of motion over a finite range of
scales. For an experimentally relevant range of Λ ≡ ln(�/a) (� is the mean intervor-
tex separation and a is the vortex core radius) between 10 and 15 the total energy
flux ε = εHD(k) + εKW(k) and the total energy spectrum E (k) = EHD(k) + EKW(k)

are dominated by the HD motions for k < 2/�. In this region E (k) follows the HD
spectrum with constant energy flux ε � εHD =const.: E (k) ∝ k−5/3 for smaller k

and tends to equipartition of the HD energy E (k) ∝ k2 for larger k. This bottle-
neck accumulation of the energy spectrum is milder than the one predicted before
in (L’vov et al. in Phys. Rev. B 76:024520, 2007) based on a model with sharp
HD-KW transition. For Λ = 15, it results in a prediction for the effective viscos-
ity ν ′ � 0.004κ (κ is the circulation quantum) which is in a reasonable agreement
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with its experimental value in 4He low-temperature experiment ≈ 0.003κ (Walmsley
et al. in Phys. Rev. Lett. 99:265302, 2007). For k > 2/�, the energy spectrum is dom-
inated by the KW component: almost flux-less KW component close to the thermo-
dynamic equilibrium, E ≈ EKW ≈ const at smaller k and the KW cascade spectrum
E (k) → EKW(k) ∝ k−7/5 at larger k.

Keywords Quantum turbulence · Liquid helium · Kelvin waves · Eddy-wave
crossover · Bottleneck

1 Introduction

Liquid 4He and 3He at low temperatures can be viewed as a superfluid with almost no
normal fluid present. Turbulence is a very common state for such superfluids. For this
particular application and in general, turbulence comprises one of the most interesting
subjects in physics with exciting recent developments; see, e.g. [3–17]. Superfluid
turbulence consists of a tangle of quantized vortex lines [3–6, 18, 19]. How is the
superfluid turbulence related to the usual hydrodynamical turbulence? On the one
hand, at the scales greater than the mean distance between the inter-vortex separation
distance one can expect the vortex discreteness to be unimportant and, therefore, the
superfluid and the hydrodynamical turbulence should have similar properties at these
scales. This can be true, of course, if the superfluid vortex tangle is not completely
random but is polarized and organized into vortex bundles which, at large scales, form
similar motions as would continuous hydrodynamic eddies. In turn, such a vortex
polarization can be either introduced by an external forcing (yet to be understood
how), or it can occur due to a (yet to be found) self-organization mechanism. On the
other hand, since there is no viscosity, the superfluid energy would cascade downscale
without loss until it reaches to the small scales where the quantum discreteness of
vorticity is important. It is believed that at this point the Kolmogorov-type (K41) eddy
dominated cascade is replaced by a cascade due to nonlinearly interacting Kelvin
waves. Kelvin wave cascade takes energy further downscale where it can be radiated
away by phonons.

Although the overall picture of superfluid turbulence described above seems quite
reasonable, some important details of this picture are yet to be established. A partic-
ularly interesting question is about the structure of the crossover between the eddy
dominated and the wave dominated regions of the spectrum. As it was pointed out
in our recent paper [1], the nonlinear transfer mechanisms among weakly nonlinear
Kelvin waves on discrete vortex lines is less efficient than the energy transfers due
to the strongly nonlinear eddy-eddy interactions in continuous fluids. This results is
an energy cascade stagnation at the crossover from the collective eddy dominated
to the single-vortex wave dominated scales. The main message of paper [1] is that
such a bottleneck phenomenon is robust and common for all the situations where
the energy cascades experience a continuous-to-discrete transition, and the details of
particular mechanism of this transition are secondary. Indeed, most discrete physical
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processes are less efficient than their continuous counterparts.1 On the other hand,
particular mechanisms of the continuous-to-discrete transition can obviously lead to
different strengths of the bottleneck. A quantitative measure of the bottleneck is the
rms vorticity value, because this is a quantity which enters into the definition of the
effective viscosity, the latter being experimentally observable via measuring decay of
the vortex line density [3, 9] (see below).

Paper [1] considers the bottleneck mechanism under the simplest assumption that
a sharp transition from the K41 eddy dominated cascade to the Kelvin wave weak
turbulence occurs at the mean inter-vortex separation scale �. In this case, the vortex
line reconnections provide a mechanism to transfer the energy from the eddy to the
wave motions, but their role for the energy cascade itself was neglected (even though
it was noted that the bottleneck strength can be affected if this role was taken into
account). On the other hand, paper [20] considered another extreme when the recon-
nections are the key process for the crossover cascade, and it was suggested that this
process goes through three different stages in a rather narrow range of scales of width
Λ—bundle-dominated, the nearest neighbor and self reconnections. In spite of this
rather unrealistic construction, the end result was still a bottleneck and reduction of
the effective viscosity, though by a smaller factor than predicted in [1], Λ instead
of Λ5.

In the present paper we neglect the role of the reconnections for the cascade
process because, as we argued in [1], the reconnections are strongly inhibited within
the polarized vortex bundles, and their occurrence is limited to the edges of these
bundles. Since the volume in between of the bundles is small compared to the vol-
ume inside of these bundles, it seems natural to assume that the main contribution to
the cascade will be due to nonlinear dynamics of non-reconnecting vortex lines inside
the vortex bundles, even though it is still possible that the reconnections can adjust
the strength of the bottleneck, particularly if the K41 range is not too large and the
turbulence polarization is reduced.2 The final answer about the role of reconnections
should, of course, be sought in the experimental and the numerical data. In the present
paper, we extend the analysis of [1] by taking into account the fact that Kelvin waves
can be generated and play a role in the energy cascade at the scales greater than �,
and that the transition from the eddy to the wave motions occurs over an extended
range of scales rather than sharply.

1It is interesting to make comparison with turbulence of weakly nonlinear waves where the main energy
transfer mechanism is due to wavenumber and frequency resonances. In bounded volumes the set of wave
modes is discrete and there are much less resonances between them than in the continuous case, so the
energy cascades between scales are significantly suppressed.
2We emphasize here that we mean small contribution of the reconnections to the cascade (i.e. to the
transfer of energy from one scale to another) and not a role of the reconnections in transferring the energy
from the eddies to the waves. The latter role of the reconnections may be quite significant, although its
relative importance with respect to non-reconnection type wave generation by non-stationary eddies is yet
to be understood. As will be seen below, we model both types of these eddy-to-wave transfers as local in
scale processes via term F(k) in (18).
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2 Bottleneck Scenario with Sharp Crossovers

2.1 Dimensional- and Velocity-Crossover Scales

When the “bottleneck” effect was first described in [1], it was assumed that the
crossover from the eddy motions to the wave motions happens sharply at the scale
� �, i.e. at the mean intervortex distance or, in the k-space, at k � kdim , where

kdim� � 1. (1a)

Subscript dim reminds that estimate (1a) follows from the simplest possible dimen-
sional reasoning. Besides, it roughly means that at the scales larger than � the vortex
lines must be polarized and must form bundles which would correspond, in a coarse-
grained sense, to the usual hydrodynamic eddies, while for k > kdim the vortex mo-
tions can be viewed as oscillations independently happening on the individual vortex
lines, i.e. as 1D Kelvin waves. On the other hand, it was also remarked in [1] that the
self-induced motion of the vortex line can get faster than its motion due to the col-
lective interaction with the other vortices in the bundle already at the scales k > kvel ,
where

kvel� �
√

2
/
Λ. (1b)

Subscript vel reminds that estimate (1b) follows from comparison of the self-induced
velocity with cross-velocity induced at a given vortex line by nearby �-distant vor-
tex line. Notice, that the critical wavenumber given by (1b) plays an important role
in the vortex-reconnection scenario presumed by Kozik and Svistunov [20]. A de-
tailed discussion of the role of this characteristic scale in our model is given below in
Appendix A.2.

Thus, Kelvin waves can be expected to be present in some form already in the
wave-vector range from kvel to kdim where they would coexist with the collective/eddy
motions. It was argued, however, that due to their oscillatory character the waves
would contribute much less into the cumulative motion of the vortex bundles in this
scale range.

Before going into details what occurs in the transition range

kvel < k < kdim , (1c)

it is worthwhile to reconsider some aspects of the problem under the simplest as-
sumption that only one crossover scale is relevant. This is the subject of the current
section.

2.2 Bottleneck Predictions in the Presence of Dimensional- and Velocity-Crossovers

Here we reconsider the simplest scenarios of the eddy-wave transition with a sharp
crossover with the only difference from [1] that the crossover scale k∗ is not neces-
sarily at kdim � 1/� but lies somewhere in the range (1c). To this end, we remind the
Kozik–Svistunov (KS) spectrum of Kelvin waves [21], in the form suggested in [1]:

EKW(k) � Λ
(
κ7ε

/
�8)1/5|k|−7/5. (2)
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Here EKW(k) is the one-dimensional (in the k-space) energy density of Kelvin waves,
normalized such that EKW = ∫

EKW(k) dk is their total energy in the unit volume,
κ is the quantum circulation and ε is the energy flux over scales. Parameters ε and
� are mutually dependent, and their relation follows from the expression for the rms
vorticity in the system of quantum filaments,

√〈|ω|2〉 � κ�−2. The mean-square vor-
ticity can be found for well developed turbulence when 〈|ω|2〉 is dominated by the
classical-quantum crossover scale k∗. In the present case

〈|ω|〉2 = 2
∫ k∗

k2 EHD(k) dk �
∫ k∗

k2 E TE

HD(k) dk � k3∗ EKW(k∗). (3)

Here the integration starts from the energy containing scale, and E TE

HD is the ther-

malized part of the HD spectrum, E TE

HD(k) ∼ k2 [1]. Both integrals are dominated by

the upper limit k∗, where E TE

HD(k∗) � EKW(k∗). In (3) we omitted the contribution of
Kelvin waves to the total vorticity and, consequently, to the vortex length density L. It
means that the value of L used in the definition of � ≡ L−1/2 is a “smoothed” vortex
length from which the Kelvin-wave contributions at scales less than � are removed.

Combining together (2) and (3), one gets

ε � κ3/Λ5�12k8∗. (4)

Factor 2 in (3) follows from a summation over the vector indices under the assumption
of isotropy of the turbulent spectra. Equation (4) corresponds to the effective viscosity

ν ′ = ε�4

κ2
� κ

/
Λ5(k∗�)8. (5)

Under the simplest assumption k∗ � kdim � 1/�, one gets the value reported in [1]:
ν ′ � κ/Λ5. For the sharp crossover at the velocity-crossover scale kvel � 1/(�

√
Λ),

where the self-induced velocity is of the order of the cross-induced velocity (see
below), one gets ν ′ � κ/Λ. As we have argued before, we expect the true value of
the crossover scale to be somewhere in the region (1c). Thus, one expects that the
true value of the bottleneck and corresponding ν ′ is somewhere in between of the
two extreme values

κΛ−5 < ν ′ < κΛ−1. (6)

Note that formally the value ν ′ � κΛ−1 is the same as the one predicted by the Kozik
and Svistunov approach based on the reconnections [20].

2.3 Bottleneck at Sharp Amplitude-Crossover

Let us now check the consistency of the assumed in the previous section sharp
crossover at some k∗ in the interval (1c). For this, let us evaluate the amplitude h(k∗)
of the Kelvin waves at this scale. Obviously, for consistency this amplitude must re-
main less than the intervortex separation h(k∗) < �. This allows one to introduce the
amplitude-crossover scale kamp , at which

h(kamp) � �. (7a)
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The estimate for h(k) can be obtained from the Hamiltonian of Kelvin waves a in the
so-called local-induction approximation (see, e.g., (5b) in our Ref. [1]):

h(k) �
√

EKW(k)
/
Λκ2k3. (7b)

Substituting here EKW(k) from (2) and using (4) and (7a) one gets an estimate

kamp� � 6
√

2
/
Λ, (7c)

which is inside of the region (6). The subscript amp reminds that estimate (7c) follows
from comparison of the wave amplitude with the intervortex distance. Factor 2 under
the root is put by analogy with (1b) to ensure that kvel < kamp for any Λ. Assuming a
sharp crossover at this scale one gets from (5):

ν ′ � κΛ−11/3, (8)

which is, as expected, within the range (6).
So, in order for the wave amplitude to be less than the intervortex distance, the

inequality k > kamp must hold. The problem is to clarify what happens in the interval

kvel < k < kamp , (9)

where the formally computed [with the Kelvin-wave spectrum (2)] wave amplitude h

exceeds the intervortex distance �, which cannot physically happen. For example, at
the scale kvel one gets from (7b): h � Λ� 
 �. On the other hand, the motions with
k > kvel cannot be considered as pure collective, because the cross-velocity (which is
the influence of the motion of one vortex line in the place of another one) is smaller
than the self-induced velocity (for more detailed discussion of this question, see Ap-
pendix A.2).

Our scenario is that in the interval (9) the growth of the wave amplitude on a par-
ticular vortex line would be arrested by the adjacent vortex lines in the bundle which
would “get in the way”. Speculations of similar type of Kozik and Svistunov [20]
lead them to a suggestion that the hydrodynamic and the wave turbulence ranges are
separated by the range of scales where the energy cascade is dominated by the vortex
line reconnections. On the other hand, it was pointed out in [1] that, because the vor-
tex lines in turbulence must be polarized and organized in bundles, the reconnection
process must be suppressed and pushed to small volumes in between of the vortex
bundles. Instead of a reconnection, one can expect a restriction of the wave motion
of an individual vortex line when it grows in amplitude and tries to push close to the
other vortex lines in the bundle. Naturally the growth of such a wave would get ar-
rested at the amplitude when the inter-vortex energy (which grows due to shortening
of the distance to the considered vortex line) becomes equal to the vortex self-energy.

This leads us to the following physical model of turbulence in the range (9). In the
x-space, turbulence consists of vortex bundles with a fractal structure. Each vortex
bundle is made of denser sub-bundles such that the mean separation of lines within
the sub-bundle is �� and the mean distance between the sub-bundles is 
�. In turn,
each sub-bundle consists of even denser sub-sub-bundles, etc. The density of vortex
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lines within a particular sub-bundle is such that at the scale of this sub-bundle the
self-energy [which can be considered as the energy of the Kelvin waves EKW(k)]
and inter-vortex energies [which should be associated with the hydrodynamic energy
EHD(k)] are balanced. This corresponds to condition in the k-space,

EHD(k) � EKW(k), (10)

in the range (9). For k > kamp , Kelvin waves can propagate on an individual vortex
line without approaching to (and being influenced by) the adjacent vortex lines. In
the other words, the range k > kamp is dominated by the Kelvin wave turbulence and
the role of the eddy component will be clarified below.

As we see, our corrected scenario which takes into account that the eddy/wave
crossover occurs over a finite range of scales predicts a bottleneck value which is
in between of the values obtained by assuming sharp transitions at the scales � and
�
√

Λ, respectively.

3 Finite Crossover Range Model

The goal of this section is to relax the simplified assumption that the bottleneck hap-
pens at some sharp crossover scale and to present a minimal semi-quantitative model
for the transition regimes around the characteristic scales introduced in the previous
section. The first step in this direction is to revise the differential approximation for
the turbulent energy cascades; this is done in the following subsection.

3.1 Differential Approximation for the Turbulent Energy Cascades

The energy spectrum E (k, t) of isotropic turbulence can be described by the continu-
ity equation

∂E (k, t)

∂t
+ ∂ε(k, t)

∂k
= 0, (11a)

where ε(k, t) is the turbulent energy flux over scales. In the stationary case, this equa-
tion simplifies to the requirement of constancy of the energy flux in the so-called in-
ertial interval, where both energy pumping and energy dissipation can be neglected
(see, e.g. textbooks [22] or [23]):

ε(k) = ε. (11b)

In order to describe a stationary spectrum E (k) one needs to know how ε(k) depends
on E (k). In this paper we will use reasonably simple differential models which de-
scribe the energy cascades of the hydrodynamic (HD) and the Kelvin wave (KW)
turbulence at least qualitatively and sometimes even semi-quantitative.

The differential equation model for HD was first proposed by Leith in 1967 [24]
and was recently studied in [25]:

εHD(k) = −1

8

√
k11 EHD(k)

d

dk

EHD(k)

k2
. (12)



J Low Temp Phys (2008) 153: 140–161 147

Here εHD(k) is the energy flux carried by the HD turbulence. For (12), the factor 1/8
reproduces a numerical coefficient that reasonably fits the experimentally observed
value of the Kolmogorov constant.

The generic HD spectrum with a constant energy flux was found in [25] as a
solution to the equation εHD(k) = ε = const:

EHD(k) = k2

[
24 ε

11 k11/2
+

(
T

πρ

)3/2
]2/3

. (13a)

The large k range describes a thermalized part of the spectrum with equipartition
of energy characterized by an effective temperature T , namely, T/2 of energy per
a degree of freedom, thus, Ek = T k2

/
πρ. At low k, (13a) coincides with the K41

spectrum:

EHD(k) = (24/11)2/3 ε2/3 k−5/3. (13b)

For Kelvin turbulence, the differential approximation model was suggested in [26].
In a way similar to (12), we suggest here a differential approximation for the energy
flux, carried by the Kelvin waves:

εKW(k) = −5

7

(k�)8 E 4
KW(k)

Λ5κ7

dEKW(k)

dk
. (14)

Note that this form is slightly less general than the one of [26] because it does not take
into account conservation of the waveaction. However, it is simpler and this allows a
more detailed analytical treatment.

In the stationary case, equation εKW(k) = ε = const has the solution

EKW(k) =
[
Λ5κ7

�8

ε

k7 +
(

T

πρ

)5]1/5

. (15a)

This solution changes from the KS spectrum for small k,

EKW(k) � Λ
(
κ7ε

/
�8)1/5

k−7/5, (15b)

to the thermodynamically equilibrium solution with equipartition of energy (Ray-
leigh–Jeans spectrum)

EKW(k) = T/πρ (15c)

for large k. The factor −5/7 in (14) is chosen such to reproduce in (15b) the numerical
coefficient equal to unity. The actual value of this factor is still not established with a
reasonable accuracy, see, e.g. [21].

When the eddy (HD) and the KW turbulence coexist, both models should work
together in such a manner that for small k the HD spectrum should be recovered,
while for large k only the KW spectrum should remain,

E (k) =
{

EHD(k), k � 1/�,

EKW(k), k 
 1/�.
(16)

A way to reach this physical requirement is presented in the following section.
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3.2 A Unified Model for the Total Eddy-Wave Energy Flux

A relatively simple model of turbulence incorporating the two types of motions, the
random eddies and the Kelvin waves, is as follows. The two types of motion coexist
and interact in an extended crossover range in the following sense:

The Total Turbulent Energy Density E (k) and the total energy flux over scales, ε(k),
consist of two respective parts,

E (k) = EHD(k) + EKW(k), (17a)

ε(k) = ε̃HD(k) + ε̃KW(k), (17b)

where energy fluxes ε̃HD(k) = εHD(k) + εKW
HD and ε̃KW(k) = εKW(k) + εHD

KW(k) have
additional contributions εKW

HD (k) and εHD
KW(k) that originate from influence of KW on

the HD-energy flux and vise versa.

Continuity Equations (11a) for the Energy Densities have to be supplemented by
additional terms ±F(k), that describe energy exchange between two types of motion:

∂EHD(k, t)

∂t
+ ∂ε̃HD(k, t)

∂k
= −F(k, t), (18a)

∂EKW(k, t)

∂t
+ ∂ε̃KW(k, t)

∂k
= F(k, t), (18b)

Cross-Contributions to the Energy Fluxes εKW
HD (k) and εHD

KW(k) are modeled in the
linear approximation with respect of the counterpart energies (here HD is counterpart
to KW and vice versa):

εKW
HD (k) = DHD{EHD} d [E KW(k)/k2∗]/dk2, (19a)

εKW
KW(k) = DKW{E KW} d [EHD(k)/k2]/dk2, (19b)

with some wave-vector k∗ which will be clarified later. The differential form of these
contributions follows from a physical hypothesis that these terms should disappear
(or become much smaller and can be neglected) when the counterpart subsystem is in
thermodynamical equilibrium, i.e. when EHD ∝ k2 and E KW ∝ k0 = const. Function-
als of the corresponding energies, D...{. . .}, will be modeled by dimensional reason-
ing exactly in the way, how (12) and (14) for the fluxes were formulated. Resulting
equations can be written in the form:

DHD{EHD} = CHD

√
k11 EHD(k), (20a)

DKW{E KW} = CKW(k�) k2∗ E 4
KW(k)κ−7, (20b)

where CHD is a dimensionless parameter and CKW(k�) is a dimensionless function
of k�, that will be chosen below in (23).
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The energy distribution between the counterpart components depends only on k

and for simplicity it is assumed to be independent of the turbulence strength,

EHD(k, t) = g(k�)E (k, t), (21a)

EKW(k, t) = [1 − g(k�)]E (k, t), (21b)

were we introduced (only) k�-dependent blending function g(k�) which will be ex-
plained below.

Resulting Model for the Total Energy Flux ε(k) Adding the two equations (18)
and using (17) yields a continuity equation of type (11a) in which ε(k) is given
by (17b). We see that the unknown function F(k, t) disappears from the game. To-
gether with (12), (14), (17b), (19), (20) and (21) this finally gives

ε(k) = −
{

1

8

√
k11g(k�)E (k) + 5

7

(k�)8k2∗[1 − g(k�)]4 E (k)4

Λ5κ7

}

× d

dk

{
E (k)

[
g(k�)

k2
+ 1 − g(k�)

k2∗

]}
. (22)

In the derivation of this equation we took

CHD = −1/8, CKW(k�) = −5(k�)8/7Λ5. (23)

Equation (22) contains yet unknown blending function g(k�) which will be dis-
cussed in the next section.

3.3 Separation of the Eddy and the Wave Motions

In order to find a qualitative form of the blending function we consider a system of
locally (in the vicinity of some point r0) near-parallel vortex lines, separated by mean
distance � and supply them by index j . Notice that in principle the same vortex line
can go far away and come close to r0 several times. To avoid this problem one should
assign the same vortex line a different index j if it leaves (or enters) the ball of radius
�
√

Λ centered at r0. Each vortex line (with vortex core radius a) produces a velocity
field vj (r), which can be found by the Biot–Savart Law (35).

The total kinetic energy E = 1
2

∑
i,j 〈vi · vj 〉 can be divided into two parts, E =

E1 + E2, where

E1 ≡ 1

2

∑
j

〈
v2
j

〉
, E2 ≡ 1

2

∑
i �=j

〈vi · vj 〉 =
∑
i<j

〈vi · vj 〉. (24)

The same subdivision can be made also for the energy density in the (one-
dimensional) k-space, E (k) = E1(k) + E2(k), with the two terms that can be found
via the k-Fourier components of the velocity fields vj (k) in a way similar to (24).
Now our idea is as follows: energy E1(k) is defined by the shape of the individual
vortex lines i.e. it is determined by the Kelvin waves, while energy E2(k) depends on
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correlations between the shapes of different vortices which produce collective, hydro-
dynamic types of motions. Therefore E1(k) can be associated with the Kelvin wave
energy, E1(k) ⇒ EKW(k), while E1(k) has to be associated with the hydrodynamic
energy, E2(k) ⇒ EHD(k). This allows one to conclude that

g(k�) = [
1 + E1(k)/E2(k)

]−1
. (25)

The rest are technicalities presented in Appendix A, where we concluded that for
practical calculations it is reasonable to use the following analytical form of the
blending function g(k�),

g(k�) = g0
[
0.32 ln(Λ + 7.5) k�

]
, (26a)

where

g0(k�) =
[

1 + (k�)2 exp(k�)

4π(1 + k�)

]−1

. (26b)

3.3.1 Comparison of Various Crossover Scales

With the proposed blending function we can introduce another cross-over scale ken�

by comparing HD and KW energies; at ken� they are equal: g(ken�) = 1/2. As follows
from (26), ken� has very weak, logarithmical dependence on Λ:

ken� � 6.64
/

ln(Λ + 7.5), (27)

presented in the second column in Table 1.
First column of this table displays the velocity-crossover scales, given by (1b):

kvel� � √
2/Λ, while in the column 3 one finds the amplitude crossover kamp�,

(7c), (the scale at which the formally computed via the KS spectrum wave ampli-
tude reaches intervortex distance). The fourth column of Table 1 displays the flux-
crossover scale, kfl�, at which the contribution of the eddy- and Kelvin-wave turbu-
lence to the energy flux in the k-space become equal. This scale is introduced below
in Sect. 3.4.

Table 1 Comparison of the energy-, the velocity-, the amplitude- and the flux-crossover scales for typical
experimental values Λ = 10 and 15 and for unrealistically large values Λ = 100 and 103. Values of kf l
depend on ε defined in a self-consistent way, as explained in Sect. 3.4.3

– 1 2 3 4 5

Λ kvel � ken� kamp � kf l� ε × 103

eq. (1b) eq. (27) eq. (7c) numerics self-cons.

10 0.45 2.3 0.76 24.4 5.2

15 0.37 2.13 0.71 24.19 4.0

102 0.14 1.4 0.52 22.8 0.30

103 0.045 0.96 0.35 22.5 1.2 × 10−3
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Notice, that ken is well approximated by (27) also for Λ < 100. Theoretically,
ken ∼ kvel ∝ 1/

√
Λ and ken � kamp in the asymptotical limit Λ → ∞. Nevertheless,

ken > kamp in the region of interest, Λ < 15. Therefore the fractal structure of the
vortex lines, described in Sect. 2.3, does not show up, and this allows us to use in the
actual region 10 < Λ < 15 the proposed simple blending function (26).

3.4 Turbulent Energy Spectra in the Differential Approximation

3.4.1 Dimensionless Representation

Now, it remains for us to solve the ODE (22) with the blending function g(k�) given
by (26). At this point, it is reasonable to non-dimensionalize the physical quantities
via introducing

x = k�, e(x) = �

κ2
E (x), ε = �4

κ3
ε. (28)

In particular, with this normalization the one-dimensional energy spectra (13) and
(15b) take the form

eHD(x) = (24/11)2/3ε2/3x−5/3, (29a)

eHD(x, T ) = x2
[

24

11

ε

x11/2
+ T 3/2

]2/3

, (29b)

eKW(x) = Λε1/5x−7/5, (29c)

where T is a non-dimensional temperature. And the ODE (22) to solve [with the
boundary condition e(x) → eKW(x) for x 
 1] becomes

ε = −
{

1

8

√
x11g(x)e(x) + 5

7

x8x2
en

Λ5

[
1 − g(x)

]4
e4(x)

}

× d

dx
e(x)

[
g(x)

x2
+ 1 − g(x)

x2
en

]
. (30)

Here we have made the natural choice that the crossover scale k∗ between the two
types of thermodynamic equilibria is ken , i.e. the scale where energies of two types of
motion are the same.

3.4.2 Λ-Dependence of the Energy Spectra

An instructive solution e(x) with Λ = 15 and ε = 0.004 is shown in Fig. 1, upper
panel, as a (black) solid line. One sees that this solution for x < xen � 2.13 follows the
thermalized HD spectrum eHD(x, T ) [given by (29b) with properly chosen T ] shown
as a dotted (cyan) line. An important observation is that the pseudo-thermalized part
of the spectrum is very pronounced in the region x > 0.3 where it is very different
from the K41 spectra of HD turbulence eHD(x) ∝ x−5/3 shown as a dashed (blue)
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Fig. 1 (Color online) Upper
panel: solid (black) line
represents a typical total
dimensionless energy spectrum
e(x) obtained by numerical
solution of the ODE (30) with
Λ = 15 and self-consistent value
of ε = 0.004, found in
Sect. 3.4.3. Dashed (blue) line
corresponds to the K41 energy
spectrum eHD(x) ∝ x−5/3 with
constant energy flux, dashed
(cyan) line is general HD
spectrum eHD(x, T = 0.042),
dashed (green) line is the KS
energy spectrum of Kelvin
waves eKW(x) ∝ x−7/5.
Vertical dashed (gray) line
shows xen. Vertical dot-dashed
(brown) line shows position xf l,
where εHD(xf l) = εKW(xf l).
Lower panel: Partial energy
fluxes εHD(x)/ε (solid line) and
εKW(x)/ε (dashed line)
obtained by numerical solution
of the ODE (30) with Λ = 15
and ε = 0.004. Dot-dashed
(blue) line represents g(x)

line. For x > xf l the solution practically coincides with the pure KS spectrum eKW(x),
(29c) shown as a dashed (green) line. Important, that the crossover scale xf l � 24.2,
at which the total energy flux consists of 50% of HD- and 50% of KW-fluxes, is much
larger that xen � 2.13, at which a half of the total energy is carried by HD and half
by KW motions. To make this evident we plotted in Fig. 1, lower panel, the partial
HD- and KW-energy fluxes vs. x. They become equal at xf l , which for Λ = 15 and
ε = 0.004 is around 24.2.

In the intermediate region xen < x < xf l the energy consists mostly of the KW
energy, while the energy flux is carried mostly by the HD motions. Explanation to
this observation is simple: as follows from (30) the HD motions are more effective
(in factor ∼ Λ5/x9/2) in support of the energy flux then the KW turbulence. Because
the main part of the energy flux is taken by the HD motions, the KW energy spectrum
(and therefore the total one) is close to the flux-less KW-solution: thermodynamic
equilibrium (15c), EKW = const. For x > xf l , both the energy and the energy flux
are carried by the KW motions. Therefore the total energy spectrum coincides with
the KW cascade solution. For larger values of ε the flux-crossover scale goes to the
smaller values of k, see Fig. 2, upper panel, remaining nevertheless larger than ken .
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Fig. 2 (Color online) Upper
panel: Normalized
non-dimensional energies e(x)

at Λ = 10,20,30 and 100.
Vertical dashed lines show xen .
Vertical dash-dotted lines
indicate positions of xf l (in red,
green and blue for
corresponding ε). Lower panel:
Λ-dependence of the
self-consistent energy flux ε:
(black) dots—numerical
estimate as explained in
Sect. 3.4.3, dashed (red)
line—analytical
approximation (32)

For smaller value of Λ qualitative behavior of E (x) remains the same, just different
parts of the spectra (with larger values of self-consistent values of ε) become less
pronounced.

3.4.3 Self-consistent Estimate of the Dimensionless Energy Flux

The energy spectra shown in Figs. 1 and 2 (which we obtained using our differential
approximation model) are quite similar to those suggested under the assumption of a
sharp crossover, see Fig. 1 in Ref. [1]. Indeed, for small k they coincide with the HD
spectrum, including the bottleneck part with (almost) thermalized part E ∝ k2, while
for large k the spectrum follows the KS spectrum ∝ k−7/5. The only difference is that
in the sharp-crossover case the thermalized part of the HD-spectrum is matched to the
KS spectrum at some k = k∗, while in the differential approximation (with a smooth
blending function) there is an essential intermediate region (about one decade) ken <

k < kf l , with (almost) KW-thermalized part E = const. This leads to an essential
difference in the estimates of the vorticity 〈ω2〉 and as a result in the estimates of the
effective viscosity ν′, a parameter that can be measured (implicitly) in experiments.
Indeed, in the models with the sharp crossover one estimates 〈ω2〉 in (3) as k3∗ EHD(k∗)
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and then equates EHD � EKW, because in this model the HD-energy “transforms” into
the KW-energy at the position of the sharp crossover.

In the “continuous” model presented above one has to account for a wide region
between ken and kf l , where the flux is supported by the HD turbulence, while the en-
ergy is dominated by the Kelvin waves. Therefore 〈ω2〉 can be estimated similarly
to (3) as 2

∫
k2 EHD(k)dk � k3

en
EHD(ken), but now EHD(ken) cannot be estimated based

on the −7/5 Kozik–Svistunov spectrum because, as one sees in Fig. 2, upper panel,
EHD is much lower at this point. As a result, at the same energy flux the rms vor-
ticity

√〈|ω|2〉 appears to be essentially smaller than the one in the sharp-crossover
models and the effective viscosity is larger. In our approach the rms vorticity can be
found more accurately by numerical calculation of the integral in (3) with spectrum
EHD(k) � g(k�)E (k), where the blending function is given by (26):

〈|ω|2〉 = 2
∫ ∞

kmin

k2g(k�)E (k) dk, (31a)

where kmin is the lower cutoff of the inertial interval. Using relation 〈|ω|2〉 = κ2/�4

and normalization (28) one finds from (31a) in the limit kmin → 0:

1 = 2
∫ ∞

0
x2g(x)e(x) dx. (31b)

Due to the ε dependence of the energy spectrum e, this relation gives a self-consistent
estimate of the dimensionless energy flux ε, which is, according to (5) and (28), noth-
ing else but ν′/κ . Resulting dependence ε vs. Λ is shown in Fig. 2, lower panel, by
a solid line. For convenience we approximate this dependence (in the actual interval
Λ < 100) analytically:

ε = ν′

κ
= 8.65

103 + 45.8Λ + 1.98Λ2
, (32)

shown in Fig. 2, lower panel, by a dashed line. Equation (32) reproduces the numeri-
cal dependence ε(Λ) with accuracy better than 1.5% for Λ < 50 and better than 8%
for 50 < Λ < 100.

Notice that the predicted value of ε = ν′/κ for Λ = 15 is 0.004 which is quite
close to the experimentally reported value ν′ � 0.003κ in 4He experiments at low
temperatures [2]. Relationship between our model and the experiments will be dis-
cussed below.

3.5 Decay of Quantum Turbulence with the Bottleneck Energy Accumulation

Having in mind experiments with decaying superfluid turbulence, like the ones in [2],
it is important to discuss how the bottleneck energy accumulation influences the de-
cay of energy and vorticity in time. For this, we divide the total HD energy

EHD =
∫ ∞

kmin

dk EHD(k) (33a)
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into a sum of two parts:

EHD = E
K41

HD + E
TE

HD, (33b)

the energy E
K41

HD associated with the K41 part of energy spectra EHD ∝ k−5/3, and the

energy E
TE

HD associated with the thermodynamic equilibrium (TE) part of the spec-
trum EHD ∝ k2. For our model:

E
K41

HD =
∫ kTE

kmin

dk EHD(k), (33c)

E
TE

HD =
∫ ∞

kTE

dk EHD(k), (33d)

where kTE is the crossover scale between K41 and TE parts of the energy spectra
corresponding to the position where EHD(k) is minimal. For Λ = 15, kTE ≈ 1/�,
see Fig. 1, upper panel. The K41-energy, E

K41

HD, is dominated by the outer region of
the k-space, k > kmin , while the TE-energy is determined by effectively the largest
k � ken of the HD motions (Fig. 1, upper panel). In the experiment [2], kmin is below
1 cm−1, which is less than ken � 2/� by one or two orders of magnitude. Then, the

experiment [2] allows to estimate the ratio E
TE

HD/E
K41

HD in the proposed framework,
and it varies from a few percents for small times to about 15–20% at the latest times
of the decay measurements. For us this means that with an acceptable accuracy one
can neglect the contribution of E

TE

HD in (33b).

Moreover, even when kept in (33b), the energy E
TE

HD has little effect on the decay

rate of the E
K41

HD energy due to a large scale separation (kmin � ken). The decay rate

of E
K41

HD is determined by the energy flux ε = −dE
K41

HD/dt at the scale of the energy
pumping, i.e. at the outer scale k = kmin . The flux itself is proportional to EHD(k)3/2 ∼
(E

K41

HD/kmin)
3/2. For systems with the time independent kmin , as it is in [2], this gives

the well known result for the late-time free-decaying HD turbulence:

E
K41

HD(t) ∝ t−2, (34a)

and the time-evolution of the energy flux

ε(t) ∝ t−3. (34b)

According to (28), ε(t) = εκ3/�4(t) with the time-independent self-consistent di-
mensionless energy flux ε, which depends only on Λ. This gives �(t) ∝ t3/4. There-
fore, the vortex line density must decay in the standard manner:

L = 1/�2 ∝ t−3/2, (34c)

in spite of the accumulation of energy E
TE

HD near the crossover scale ken.

Notice, that energy E
TE

HD(t) decays slower than E
K41

HD(t) ∝ t−2. Indeed, in our

model the dimensionless energy E
TE

HD�2/κ2 (cf. (28)) is dominated by the time in-
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dependent scale xen and, hence, by itself is time independent. Therefore,

E
TE

HD(t) ∝ �−2 ∝ t−3/2. (34d)

One concludes that E
TE

HD energy is “decoupled” from the decay process of E
K41

HD
energy and does not affect the decay law (34c) of the vortex line density until to the
very late stage of the decay, when the intervortex distance approaches the outer scale
of turbulence and the entire model fails.

4 Summary and Discussion

In this paper, we revised the theory of the bottleneck crossover from the classical K41
cascade to the Kelvin wave cascade. In its previous form, transition from the eddy to
the wave cascades was assumed to occur sharply at the scale �. The simple fact that
the wave interactions are less efficient for the turbulent cascade than the hydrody-
namic eddies immediately yields prediction for the bottleneck accumulation near the
crossover scale. However, the bottleneck strength is rather sensitive to the details of
the crossover region. In the present paper, we take into account that there exists a fi-
nite range where eddies and waves coexist and affect each other, making the crossover
more gradual. As a result, the bottleneck in such a case is milder than in the model
with the sharp crossover. To model the gradual transition range, we have employed
a simplified turbulence model which is based on the differential approximation mod-
els of Leith type for the HD and KW components. Importantly, this model allows to
make predictions for the realistic experimental values Λ in the range from 10 to 15,
rather than making asymptotical predictions for the case Λ → ∞. This appears to be
important because, e.g., the asymptotic theory gives kamp 
 ken whereas for Λ in the
range from 10 to 15 we have kamp < ken . As a result, for the experimentally important
situations there is no range with equipartition of the eddy and the wave energies given
by (10). For similar reasons, the theory of crossover [20] which fits three asymptotic
ranges into a single decade of scales is rather unrealistic (leaving aside the issue about
the role of reconnections which we mentioned before).

One may experience some problems trying to imagine any HD components at
k� > 2π , where the wavelength becomes smaller than the intervortex distance, and
even come to an idea that g(k�) must become zero sharply at k� = 2π , or generally,
k� ∼ 1. Our model is based on a (reasonable) hypothesis that the HD motions are
identified with the coherent part of different vortex line motions. In such an approach
there is no formal limitation for the value of k from above. At k� > 1 the velocity pro-
duced by k-distortion of a given vortex line in the position of another �-separated line,
which is the reason for correlations in their motions, decays exponentially with k�.
That is why our blending function, which measures the fraction of the HD motions,
decays exponentially with k�. The actual hypothesis in this place is that even when
g(k�) � 1 the nonlinear energy flux carried by the HD motions is governed by the
same equations as for the pure HD motions when g(k�) = 1.

The found value of ε = ν′/κ for Λ = 15 is 0.004 which is quite close to the
experimentally observed value ν′/κ � 0.003 in 4He experiments at low temperatures
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[2]. Having in mind that our model does not contain fitting parameters, optimists can
consider this agreement as more than satisfactory. On the other hand, pessimists can
consider any agreement with just one number as accidental. Realists may not find the
detailed analysis of this model very convincing, warring about too may assumptions,
and too little physical justification for the procedures being used. In particular, we
should recall that the suggested model is based on a hypothesis of blending function,
which was estimated without taking into the account the vectorial structure of the
velocity field and, moreover, includes very important (step-like) assumption about
the pair-distribution function of the vortex positions which allows one to estimate
sum (41a) as integral (41b). Our feeling is that these approximations do not affect the
results too much and a good agreement between the model and experimental values
of ν′ supports the suggested model. Notice that our model predicts not only the value
of ν′ but the entire energy spectrum, which consists of four parts: K41 HD energy
spectrum with constant energy flux, E ∝ k−5/3, a HD equilibrium E ∝ k2, a KW
equilibrium E � const and a KW-spectrum with constant energy flux, E ∝ k−7/5.

We believe that our model (which is not a theory yet), based on idea of coexistence
of hydrodynamic and Kelvin-wave turbulence, is a step forward in such a difficult and
challenging problem as superfluid turbulence, especially in comparison with the over-
simplified scenarios of sharp crossover, considered in the limit Λ → ∞. Very definite
qualitative predictions obtained in this paper call for more detailed experimental and
numerical study of the superfluid turbulence, which, as we believe, will support our
model. When and if this happens we are planning further theoretical development of
the model toward a theory of eddy-wave crossover of superfluid turbulence.
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Appendix A: Estimation of the HD-KW Blending Function

A.1 Estimation of the Velocity Field, Induced by the Vortex Distortion

To estimate the HD-KW blending function g(k�), given by (25) we consider a vortex
line slightly distorted, say in y-direction, by a sinus with a small amplitude A, running
along z-axis with the k-vector k. Then d� = (0, Ak cos(kz + φ), 1)dz, where φ is an
arbitrary phase. Each line produces velocity that can be found via Bio–Savart Law:

vj (r) = κ

4π

∫ +∞

−∞
d�j × sj

s3
j

, (35)

where sj = r − rj with rj being the radius-vector pointing to the �j —the length
element along the j -th vortex line and. The total mean density of the kinetic energy
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per unit mass is E = 1
2 〈|V |2〉, where V (r) = ∑

j vj (r) is the total velocity field,
and one understands 〈. . . 〉 as the averaging with respect of the (random) vortex-line
positions.

Using (35) we can find the resulting velocity (for simplicity) in the ZY -plane at
distance R from the line. This velocity has only one component, vx , and it is given
by:

vx = κ

4π

∫ ∞

−∞
R − A sin (kz + φ) + Akz cos(kz + φ)

{z2 + [R − A sin (kz + φ)]2}3/2
dz. (36)

Computing the contribution to the amplitude of the velocity variations proportional
to the distortion amplitude A, one finds magnitude [i.e. factor in front of cos(kz+φ)]
of the velocity fluctuations:

δv(R) = κ A

2πR2
kR

{
kR [K2(kR) − K0(kR) ] − K1(kR)

}
(37a)

⇒ δv(R) � κ A

2πR2

√
1 + π

2
kR exp(−kR), (37b)

where Kn are modified Bessel functions of the second kind. Interesting, that a simple
interpolation (37b) reproduces the exact result (37a) with an accuracy better than 2%.

Equations (37) assume that the distance R to the vortex line is large enough to be
able to neglect finiteness of the core radius a. In the opposite limit, R � a, one can
use an equation for the self-induced velocity, in which the core radius is hidden in the
parameter Λ = ln(�/a):

δvsi = AΛk2κ/4π. (37c)

Considering this equation formally as a limit for the velocity when R → 0, we sug-
gest an interpolation formula approximately valid for any R:

δvk(R) � κA

2π

Λk2 e−kR

2 + Λ(kR)2

√
1 + π

2
kR, (37d)

where subscript k reminds that this velocity is induced by vortex line, distorted by
sin(kr).

A.2 Velocity Crossover Scale

A way to estimate the eddy-wave crossover scale, suggested in [20] is to compare the
self-induced velocity filed with the velocity field produced by a different neighbor-
ing vortex line. To detail derivation of [20] retaining numerical factors, we consider
simple geometry with two sin-disturbed parallel vortex lines separated by distance �.
They “start to feel” each other when δv � δvSI, i.e.:

δv � δvSI ⇔ √
4 + 2π kvel� e−kvel� � Λ(kvel�)

2. (38)

An approximate solution to this equation (with an accuracy better than 10% for
Λ ≥ 10) is given by (1b). One can think that for the scales less than kvel , there is
the cumulative effect and hydrodynamic-like behavior. For the scales larger than kvel
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the vortices does not seem to feel each other much, and the separate vortex line be-
havior is important, hence the Kelvin waves. Corrections to this simplest viewpoint
will be discussed below.

A.3 Estimate of the Blending Function

Having at hand an estimate of the velocity filed (37d) we can use (25) to find the
blending function g(k�).

The first step is to obtain the kinetic energy density E11(k) (per unit length), pro-
duced by one sin-distorted (with wave-vector k) vortex line:

E11(k) = ρ0

2

∫ ∫ 〈∣∣vk(R, z)
∣∣2〉

dxdy (39a)

≈ ρ0
(Aκ Λk)2

8π

∫ ∞

0

(1 + πρ/2) e−2ρ

(2 + Λρ2)2
ρ dρ (39b)

≈ ρ0
Λ

8π
(Aκ k)2, for Λ 
 1. (39c)

Here the fluid density ρ0 should be distinguished from the dimensionless radius
ρ = kR, R = √

x2 + y2. In (39a) we should substitute vk(R, z) = vk(R) cos(kz + φ)

from (37d) integrate over (x, y)-plane orthogonal to the mean vortex line directed
along z, and average 〈cos2(kz + φ)〉 = 1

2 along z. Considering the integral in dimen-
sionless polar coordinates ρ and ϕ after the free integration over ϕ, we get (39b), in
which integral can be analytically taken in the limit of large Λ with the result (39c).
This formula can also be obtained directly from the Kelvin-wave Hamiltonian in
the so-called local-induced approximation, see e.g. (5b) in [1], where one expands√

1 + |dw(z)/dz|2 over the line distortion w(z) = A sin(kz).

The second step is to find cross-kinetic energy density E1j (k, �1j ) (per unite
length), proportional to the product of the velocities produced by two sin-distorted
vortex lines, separated by �1j .

E1j (k, �1j ) = ρ0

∫ ∞

−∞
dx

∫ ∞

−∞
dy

〈∣∣vk(R1, z)vk(R2, z)
∣∣〉

= ρ0

2

(
κAΛk

π

)2 ∫ ∞

0
δx̃

∫ �̃1j /2

−∞
δỹ F (ρ1)F (ρ2) e−ρ+ , (40a)

F(ρ) =
√

1 + πρ/2

2 + Λρ2
, ρ+ = ρ1 + ρ2. (40b)

Here x̃ = k x, ỹ = k y, �̃1j = k�1j , ρ1 = k
√

x2 + y2 and ρ2 = k

√
x2 + (y − �1j )2.

The change in the limits of integration is due to the (average) symmetry of the inte-
grand relative to the plane y = �1j /2. The main contribution to the integral comes
from the region with x̃ < �̃1j , which allows to simplify the integrand replacing
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ρ2 ⇒ �̃1j − ỹ + x̃2/(2�1j ). This clarifies the leading dependence E1j (k, �1j ) on �1j

as

E1j (k, �1j ) ∝ exp(−k �1j ). (40c)

Algebraic improvement of this estimate cane be obtained by neglecting the (x, y)-
dependence of F(ρ2) in (40a). This procedure can be justified asymptotically for
k�1j 
 1. The resulting dependence E1j (k, �1j ) ∝ F(k�1j ) exp(−k �1j ) approxi-
mates the integral (40a) with an accuracy of 10% for k �1j > 2. For smaller k�1j

one has to account for �1j dependence of the remained integral
∫ �1j /2
−∞ . . . dy �

(c1/Λ) ln(k�1j + c2) with c1 and c2 weakly dependent on Λ. As a result we approx-
imate (with accuracy about 25%) the k�1j dependence of the energy E1j as follows:

E1j (k, �1j ) ≈ ρ0
Λ

8π
(Aκ k)2 c1 ln(k�1j + c2)

√
1 + πk�1j /2

2 + Λ(k�1j )2
exp(−k�1j ). (40d)

In typical experiments with superfluid 3He and 4He the value of Λ varies from 10
to 15. Therefore we present here parameters c1 ≈ 1.37, c2 ≈ 1.25 for Λ = 10 and
c1 ≈ 1.54, c2 ≈ 1.22 for Λ = 15.

The third step is to find the relative total cross-energy of all j �= 1 pairs

R(k�) =
∑
j �=1

E1j (k, �1j )

E11(k)
(41a)

� 4π

(k�)2

∫ ∞

�0

d�1j �1j

E1j (k, �1j )

E11(k)
, (41b)

which is estimated in (41b) in continuous approximation assuming that j -lines are
randomly distributed around line i = 1 with mean density 1/�2 for �1j exceeding,
value �. Generally speaking, the integral (41b) should contain probability function
of vortex separations P (�ij ). Having no reasonable model for it, we choose a simple
step function P (x) = 0 for x > 1.

Blending function g(k�), defined by (25), is related to the ratio (41) as follows:

g(k�) = R(k�)
/[1 + R(k�)], (42)

Taking oversimplified representation (40c) of integral (40a) one computes g0(k�),
see (26b):

g0(k�) =
[

1 + (k�)2 exp(k�)

4π(1 + k�)

]−1

. (43)

Comparing Λ-independent function g0(k�) with gnum(k�), which depends also on Λ,
we have improved its analytical representation by introducing Λ-dependent rescaling
of the argument, see (26a):

g(k�) = g0[0.32 ln(Λ + 7.5)k�]. (44)
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The resulting function g(k�) gives a very reasonable approximation to the results of
“exact” numerical calculation of gnum(k�). Therefore in practical calculations we will
use analytical form (26) of the blending function g(k�).
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