
10 January 2000

Ž .Physics Letters A 264 2000 444–448
www.elsevier.nlrlocaterphysleta

Exact solutions for near-wall turbulence theory

S. Nazarenko
Mathematics Institute, UniÕersity of Warwick, CoÕentry CV4 7AL, United Kingdom

Received 1 September 1999; received in revised form 18 November 1999; accepted 25 November 1999
Communicated by A.P. Fordy

Abstract

Using the 2D case as a simple example, we outline an analytical approach to the near wall turbulence outside of the
viscous sublayer. Our theory combines the Reynolds averaged mean-flow equation nonlinearly coupled to the RDT
equations for turbulence with a weak small-scale forcing. Such an external forcing models the dilute vortex debris
propagating away from the wall as a result of intermittent bursts accompanying the breakdown of the coherent vortices in the
viscous sublayer. We show that the Log law of the wall exists as an exact analytical solution in our model if the starting
turbulent vorticity is statistically homogeneous in space and shortly correlated in time. q 2000 Elsevier Science B.V. All
rights reserved.

PACS: 47.27.Nz; 47.27.Eq

Often, most interesting physical phenomena are
too hard to be explained rigorously in all their
generality. One of them, the near-wall turbulence,
has been a subject of lively discussion in literature
over several past years. The focus of this discussion
has been on the question whether turbulence pos-
sesses the complete similarity property, a classical

w x w xpicture of Von Karman 1 and Prandtl 2 predicting
the Log law of the wall, or it is characterized by an
incomplete similarity and power law mean profiles

w xas suggested by Barenblatt et al. 3–5 . Scaling
w xtheories, even in their refined form 3–6 , proved to

be insufficient for resolving such a controversy be-
cause, being phenomenological in nature, they in-
volve adjustable parameters and even contradicting

w xtheories can often fit the same experimental 7–9 or
w xnumerical data 10 . On the other hand, understand-

ing of physical mechanisms is usually helped by
exact solutions obtained directly from the Navier–

Stokes equations for special idealized situations and
serving as reference points for more general theory.
It is the lack of such exact results that obscures
understanding of the near-wall turbulence, and the
aim of the present letter is to obtain some rigorous
analytical solutions by combining the Rapid Distor-

Ž .tion theory RDT and the averaged Reynolds stress
description of the mean flow. The idea to couple
RDT and the mean flow equations was suggested for

w xturbulent shear flows by Moffatt 11 . New element
introduced in the present Letter is an external forcing
in the RDT equations that allows to obtain solutions
corresponding to statistically stationary turbulence.
In real near-wall turbulence the turbulence forcing
outside of the viscous sublayer is provided by con-
tinuous supply of starting vorticity propagating into
the outer regions as a result of intermittent bursts of
coherent structures generated inside the viscous sub-
layer. In this Letter we will only consider the sim-

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 99 00840-3



( )S. NazarenkorPhysics Letters A 264 2000 444–448 445

plest case of 2D shear flow turbulence leaving the
detailed study of a more realistic 3D case for sepa-

w xrate publication 12,13 .
Let us write the 2D Navier–Stokes equations

formulated in terms of vorticity v as

E vquP=vssqn= 2v , 1Ž .t

Ž .s is a random external forcing and let us assume
that the velocity field u consists of a large-scale

Ž .shear flow U y e and small-scale turbulence u. In˜x

spirit of RDT, let us assume turbulence to be weak
< < < <compared to the mean flow, v s E u yE u <˜ x y y x

< < < <V s E U , and let us linearize the Navier–Stokesy

equations,

E vqUE vqu V
X y ssqn= 2v , 2Ž . Ž .˜ ˜ ˜ ˜t x 2

We assumed that the forcing s has a scale l which
is much less than characteristic scale of the mean
flow L, i.e. es lrL<1. This implies that turbu-
lence is small-scale and one can neglect the term
u V

X and use a WKB description using Gabor trans-˜2

form, which is defined as

) < < yi p x 0qi qŽ yyy0 .v y ,k ,t s f e yyy eŽ . Ž .ˆ H 0

=v x ,t dx , 3Ž . Ž .˜ 0 0

Ž .where ks p,q is the wavevector, k;2prl, 14

) Ž .e 4e , and f x is a rapidly decreasing at infinity
function, for example eyx 2

. Note that the WKB
equations can be also obtained using Wigner func-

w xtion 14,15 , although using Gabor transform allows
w xa simpler derivation 16

Let us apply Gabor transform to the vorticity Eq.
Ž .1 ,

) < < yi p x 0qi qŽ yyy0 .E vq f e yyy eŽ .ˆ Ht 0

=U y E v x dx ssyn k 2v . 4Ž . Ž . Ž .˜ ˆ ˆ0 x 0 0 0

Because of the decreasing kernel f , the main contri-
< <bution into the integral here comes from yyy ;0

1re ). Therefore, one can Taylor expand function
Ž .U y which varies significantly only at the large0

scale 1re41re ). Neglecting the quadratic terms
Ž ) .2in this Taylor expansion, which are small as ere ,

we have

) < < yi p x 0qi qŽ yyy0 .E vq f e yyy eŽ .ˆ Ht 0

=U y E v x dxŽ . Ž .˜x 0 00

) < < yi p x 0qi qŽ yyy0 .q f e yyy e y yyŽ .Ž .H 0 0

=U X y E v x dx ssyn k 2v . 5Ž . Ž . Ž .˜ ˆ ˆx 0 00

Integrating by parts in both integrals and changing
Ž .y yy ™ iE in the second integral we have0 q

E vq ipv UyU X pE vssyn k 2v . 6Ž .ˆ ˆ ˆ ˆ ˆt q

This is a linear first-order ODE providing RDT
description of turbulence in two dimensions. This
equation can be solved exactly for arbitrary forcing
s and viscosity n . However, for the sake of clarity
and brevity we are not going to do so but simply
mention that viscosity, if small, does not affect the
mean flow dynamics and can be neglected. This is
because the high-wavenumber part of the turbulent
spectrum contains almost no energy in 2D. This
property is not valid for 3D turbulence for which
RDT predicts growth of the turbulent energy because
of the vortex stretching. Hereafter we will ignore
viscosity, which will make our analysis much sim-

Žpler than in 3D case which will be considered in
w x.Refs. 12,13 .

We obtain the mean flow equation in a standard
way by averaging of the Navier–Stokes,

E UsyE tyE P ,t y x

² :ts u u , 7Ž .1 2

where, as usually, the pressure gradient E P is con-x
Ž .stant. We ignored viscosity in 7 because we we

will be only interested to describe the mean profile
far from the viscous sublayer. The easiest averaging
procedure that allows to write the mean flow and
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turbulence equations in a closed form is combination
Ž .of the ensemble averaging denoted by overbar and

a space filtering,

`1 R² :a y ,t s lim dx dyŽ . H HR™` 0 02 R yR y`

= 2 ) < <f e yyy a x ,t , 8Ž . Ž .Ž .0 0

where f is the same function as in the Gabor trans-
Ž .form 3 , and, therefore, the space filtering in y is

over a length which is intermediate between the
small scale l and the large scale L. In this case,

1
t y s u y ,k u y ,yk dkŽ . Ž . Ž .ˆ ˆH 1 222pŽ .

1 pq
s v y ,k v y ,yk dk . 9Ž . Ž . Ž .ˆ ˆH2 4k2pŽ .

This expression for the averaged Reynolds stress was
w xobtained before in Refs. 14,15 . Let us multiply Eq.

Ž . ) Ž . Ž .6 by v y,k sv y,yk and average the resultˆ ˆ
² ):assuming a stationary state, E vv sE Us0.t t

Neglecting viscosity, we have

X ² ):yU p E vv sF . 10Ž .q

)Ž . Ž .where Fs2 Re sv . Integrating in 9 by partsˆ ˆ
Ž .with respect to q and using 10 , we have

l
t y sy , 11Ž . Ž .XU

with

1 F
ls dk . 12Ž .H2 2k2 2pŽ .

Note that l)0 and, therefore, the turbulent momen-
tum flux is always in the same direction as the
viscous one. On the other hand, the y-derivative of
the turbulent flux has opposite sign to the one of the

XX Ž X XX.viscous term nU because sign U sysign U
and, therefore, the turbulent friction is negative in
2D case. Such a phenomenon is an artifact of the 2D
geometry of the problem which is closely related to
the fact of negative eddy diffusivity and inverse
energy cascade in 2D. The turbulent friction will be

w xshown to be positive in 3D 12 .

Ž .Substituting Eq. 11 into the stationary version of
Ž .the mean flow equation Eq. 6 and integrating over

y we have

lrU X sE P y. 13Ž .x

The integration constant here is chosen to be zero
which corresponds to fixing the coordinate origin. In
the important special case of short correlated in time
forcing s the second and the third terms in the RHS

Ž .of Eq. 6 are much less than the first one so that
Ž . ` Ž .v k,t fH s k,ty t dt andˆ ˆ0 1 1

0
F k s2 Re s k ,t s yk ,0 dt 14Ž . Ž . Ž . Ž .ˆ ˆH

y`

If, in addition, forcing s is statistically uniform in
Ž .space i.e. s is independent of y then F is inde-ˆ

pendent of y and lsconst. In this case one can
Ž .further integrate Eq. 13 and obtain

l
Us log y 15Ž .

E Px

As we see, the celebrated Log law of the wall can be
directly derived from the Navier–Stokes equations
with an external turbulence forcing assuming that

Ž . Ž . Ž .this forcing is i weak, ii small-scale, iii short
Ž .correlated in time and iv statistically homogeneous

in space. Note that the first two assumptions are
essential for validity of our model because they
allow to use RDT and the scale separation technique.
These assumptions about the turbulence forcing seem
to be realistic because in reality the starting vorticity
is generated in a thin viscous sublayer which makes
it small-scale. It further propagates away from the

Žwall and gets diluted in a large compared to the
.viscous sublayer volume which makes it weak. On

Ž . Ž .the other hand, properties iii and iv are essential
for existence of the logarithmic profile, but they are
not important for validity of the RDT-type descrip-
tion. For example, if turbulence forcing is a power
law function s;y a then the Log law is replaced byˆ
a power law profile of the mean velocity.

Finally, let us use our theory to calculate the
Ž . Ž .one-dimensional spectrum f p, y s 1r4p11

Hu u) dq which is frequently measured in experi-ˆ ˆ1 1

ments. Because we are dealing with Gabor trans-
forms of real functions, it is enough to consider only



( )S. NazarenkorPhysics Letters A 264 2000 444–448 447

half of the wavenumber space q-0 and double the
result; we have

1 1 q2
0 0

) )f p , y s u u dqs vv dqŽ . ˆ ˆ ˆ ˆH H11 1 1 42p 2p ky` y`

q 21 q dq0 1 1
)sy E vv dqŽ .ˆ ˆH H q22 2ž /2p y` y` p qqŽ .1

q 21 q dq0 1 1
s F p ,q dqŽ .H HX 22 2ž /2p U p y` y` p qqŽ .1

16Ž .

ŽIn the range p<k where k is a characteristic
) )

Ž ..wavenumber of the forcing F k we have

1 F 0,qŽ .0
f p , y fy dqŽ . HX11 2p U p qy`

`1 F 0,qŽ .
s dq 17Ž .HX < <4p U p qy`

Ž .Taking into account Eq. 13 one can write

Cu2 y 1
)

f p , y s , 18Ž . Ž .11 H p

where C is a non-dimensionless constant,

`1 F 0,qŽ .
Cs dq. 19Ž .H

< <2pl qy`

Here, we took into account E Ps2u2 rH where ux ) )

is the friction velocity and H is the channel width.
One can see that for p<k the spectrum becomes

)

universal in that its exponent does not depend on the
particular form of the forcing function. Universal
py1 spectra are indeed observed experimentally in
the low wavenumber range although their y depen-

Ž . w xdence is different from the one in Eq. 18 17 .
w xIn the next paper 12 we will consider the 3D

case which involves more complicated algebra but it
is more realistic in that the turbulent perturbations
are amplified by the mean flow rather than sup-
pressed as in the 2D case. Also, the 3D theory
predicts positive turbulent friction, as it has to be in
real shear flows. We will show however that in more
realistic 3D model the conditions of realizability of
the Log law remain essentially the same as for the

simple 2D case considered in this Letter. This indi-
Žcates that starting vorticity generated in the sub-

.layer is an important quantity that affects the shear
flow turbulence and the mean velocity profile and
that this object has to be examined experimentally
and using the numerical data. In particular, if vortic-
ity gets spread nearly uniformly by the intermittent
sublayer bursts and if its correlation is short, one

Žshould expect universal Log law of the wall which
is insensitive to the spectral shape of the starting

.vorticity . We will also show in the nex paper that
viscosity and anisotropy play an essential role in 3D

Ž .shear flow turbulence in contrast with 2D , in par-
ticular in determining the turbulent stresses and spec-
tra. This arises because, unlike in 2D, the 3D pertur-
bations grow and a finite viscosity is needed to
determine their maximum amplitude and regularize
the intgrals defining the turbulent stresses and spec-
tra. Finally, 3D geometry brings about curvature
effects which leed to growing waves not described

w xby RDT 18 . These waves play an important role
very close to the wall as they may contribute to the
vorticity bursting process; their study, therefore, is
important to describe the full cycle of self-supporting
turbulence re-generation.
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