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Abstract. — Numerical and experimental results indicate that the critical amplitude for
non-linear growth of disturbances in a uniform shear flow follows two scaling laws, depending on
the shape of the initial disturbance: i) a Re~! law for disturbances with zero streamwise
dependence (streaks) (Kreiss et al., submitted to J. Fluid Mech.); ii) a Re %4*%! law for
disturbances with non-zero streamwise dependence (spots) (Dauchot and Daviaud, submitted to
Phys. Fluid A). It is shown that these laws can be explained by the competition between
non-linear growth and viscous dissipation and that the difference in exponent simply reflects the
difference in viscous-decay mechanism. Lower bounds for conditions for non-linear growth are
derived analytically. They follow a Re~! and Re ~!/% law for streamwise and spotwise initial
perturbations. The transition to a self-sustained turbulent state is also discussed. Upper bounds
for this transition are derived. They follow, respectively, a Re ~1/2 and Re ~!/% law for streak or
spot initial perturbations.

Suberitical transition to turbulence has been observed in many uniform Couette,
Poiseuille, wind tunnel and water channel shear flows. A detailed understanding of this
transition is still missing. Over the past few years, however, important progress concerning
the subcritical growth of initial disturbances has been made. Various mechanisms have been
suggested. Dubrulle and Zahn [1] suggested that small but finite perturbations with zero
streamwise and spanwise dependence could induce a substantial growth via creation of a local
inflection point in the mean shear profile and development of a linear instability. A necessary
condition for this mechanism to operate is that the relative amplitude of the disturbance, A,
is larger than some power of the Reynolds number of the mean flow: A > Re ~2/%. Numerical
simulations [2] have shown that such a mechanism may eventually lead to a self-sustained
turbulent state in 3D, but not in 2D. More generally, it was shown that any large enough
localized perturbation can be subject to an algebraic growth mechanism under suberitical
conditions. There is not a clear consensus about the physical origin of this growth.
Interesting properties of the linear dynamics follow from the fact that the linear operator of
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the shear flow problem is not self-conjugate [3-5]. Algebraic growth is then possible via a
resonance mechanism between the pseudomodes [6] and a coupling of vertical vorticity and
vertical velocity [6-9]. Detailed analysis of the pseudospectrum of the Couette and Poiseuille
flow shows that the resonance (hence the energy amplification) is largest for perturbations
with zero streamwise wave numbers, but non-zero spanwise dependence [5].

In the case of uniform-shear flows the linear problem can be solved analytically; this
approach is known as the Rapid Distortion Theory (RDT) [10,11]. The linear theory in this
case fails in a finite time inversely proportional to the initial amplitude of perturbations. A
weakly non-linear generalization of the RDT has been recently worked out by Nazarenko and
Zakharov [12].

Work is also in progress investigating the scaling-law behavior of the critical perturbation
amplitude for non-linear growth and/or transition to turbulence in plane Couette flow. Kreiss
et al.[13] derive an exact lower bound for the amplitude below which all perturbations
eventually decay. This bound varies like Re “2/4. Using numerical simulations, they also
study the threshold of transition towards a turbulent state when the initial condition is in the
form of two streamwise, counter-rotating vortices (generating the so-called streaks with zero
streamwise dependence in the streamwise velocity field). The threshold varies like Re ™.
The transition is related to the onset of a secondary instability in the spanwise components,
due to a large shear in that direction. The behavior of initial perturbations with non-zero
streamwise dependence (spots) has been studied recently in laboratory experiments by
Daviaud and collaborators [14,15]. The threshold amplitude for non-linear growth of the
initial perturbation follows a scaling law: A x (Re — Re, ) %4*% where Re, = 350 + 20 is
the critical Reynolds number below which any initial spot decays. The non-linear growth
regime was detected by the spanwise spreading of the spots (in the linear regime, only
streamwise growth is allowed). The behavior of the spots was not studied for sufficiently iong
time to check whether the non-linear growth is automatically followed by a transition to a
self-sustained turbulent state. However, preliminary results [16] show that for the smallest
perturbations the non-linear growth does not lead to turbulence. This is an indication of the
existence of a higher threshold for transition towards a turbulent state. This observation was
also made by Klingman [9] in the case of the Poiseuille flow.

The coexistence of different scaling laws depending on the shape of the initial condition is
an indication of the complexity of the transition to turbulence. It seems also to imply that
several roads to turbulence are possible. In fact, we would like to show here that these laws
simply can be explained by two different viscous-decay mechanisms and that a universal
transition to turbulence is still possible. Our study will focus on the case of the plane Couette
flow, a parallel shear flow of constant vorticity. Its velocity profile is given by

U=oaye,. (1

The streamwise and spanwise direction, therefore, respectively refer to the x- and
z-direction. The boundary conditions compatible with such velocity law are irrelevant to the
various mechanisms discussed in this paper. They shall henceforth be ignored.

The Couette flow is linearly stable and, therefore, is generically in the suberitical regime.
Small initial perturbations can then only grow algebraically. This growth results in an
increase of the energy of the perturbation, and an amplification of the initial disturbance. It
may lead, via non-linear interactions, to a redistribution of energy between all the velocity
components, and further amplification via secondary instability mechanisms. The typical
time scale for non-linear energy redistribution is of the order of 7, = l/v, where v and ! are
typical velocity and scale of the initial perturbation. The growth is, however, limited by
viscous dissipation, which produces an exponential decay of the perturbation. The typical
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time seale for viscous decay depends on the shape of the initial disturbance. Indeed, continual
tilting in the shear flow of surfaces of constant « results in an increase of the wave number %,
proportional to the x-component k,, while the latter remains unaffected:

ky =k} +krot, k,=k. ' (2)

kY and k are the initial + and y wave numbers. Physically, the wave number k, remains
unchanged due to the invariance of the system with respect to translations along x. The
linear growth of k, is a consequence of the vortex-tube volume conservation in the process of
its shearing by the mean flow. Of course, the described tilting mechanism only takes into
account the transfer of energy in the spectral space due to the mean flow. Besides the tilting,
a spectral cascade may result from the mutual interactions of the perturbations, which are
not mediated by the mean flow. Such a spectral transfer is ineffective at the initial stage of
the growth of perturbations. Further, we will assume that the tilting by the mean flow
remains the dominant mechanism even near the transition to turbulence, when the
perturbations cannot be treated as weak. An alternative assumption, that the turbulence
structure is weakly affected by the shearing and determined only by the local interactions of
the turbulent scales, would be more appropriate to the quasi-isotropic turbulent systems,
where the source of the turbulent energy is not associated with the mean shear flow.

Using, for example, shearing coordinates [17], it can be proved that the tilting mechanism
produces, in the linear regime, an exponential viscous decay proportional to

¢ ,
exp l -y j (k2(7) + k:(‘r)) d‘r] . (3)

0

This leads to two typical viscous time scales, according to the shape of the initial
perturbation. Streamwise perturbations (k; << k) are insensitive to the tilting mechanism
and decay in a time scale vy, = (k' H)"2Res !, as in ordinary non-sheared flow; spotwise
perturbations (k* =k;*) decay on a faster time scale 7y, = (k* H) **Re '3 ¢!, In these
estimates, H is the typical scale of the basic flow (half the channel width) and Re its Reynolds
number.

The possibility of non-linear growth (and transition to turbulence) results in a competition
between the algebraic growth and energy redistribution, and the viscous decay. It can only
occur provided the amplitude of the initial disturbance satisfies

T = — < Tyige - ) : 4)
v

This translates into two different scaling laws for the relative amplitude of the perturbation
A =v/(cH):

-1/3p,-1/3 : : -1 (5)
A>(kXH) V3Re 13, for spotwise perturbations (17! ~k*).

{A > (kyH)Re™, for streamwise perturbations (17! ~k});

These conditions are necessary (lower bounds) for the non-linear growth of the perturbation.

Their different secaling, close to the experimental values, is a direct consequence of the

difference in the viscous-decay mechanism. This provides, therefore, the simplest expla-
nation of the experimental data.

Conditions (5) are, however, probably not a sufficient condition for the existence of a

self-sustained turbulent state, because they do not guarantee that the non-linear interaction
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will modify sufficiently the mean shear to stop completely the viscous decay. The latter
occurs as long as the total mean shear can produce a significant increase of the x-component
of the wave number of the perturbation (see eq. (2)). The mechanism that can stop this
process is, therefore, the non-linear flattening of the mean-velocity profile, resulting in a zero
rate of shear (¢ = 0), except in narrow regions near the boundaries. Such flattening is indeed
observed generically in many turbulent shear flows, such as plane Couette flow [18], plane
Poiseuille flow, rotating Couette flow[19], and inside the turbulent spots[20,21]. It is
favored by two mechanisms: transfer of energy between the mean shear and the turbulent
component, and modification of the mean-velocity profile by the streamwise turbulent
motions. Such motions have a low x-wave number and decay on a longer time scale than the
other motions. Moreover, they induce a modification of the mean profile by transport of
low-velocity fluid (near the center of the channel) to regions of higher mean velocities (near
the boundaries) and vice versa. This transport mechanism has been observed in Couette flow
experiments thanks to small tracer particles [15]. Overall, this produces a flattening of the
mean-shear profile, so that according to (2) the growth of &, stops and the system reaches the
stationary state.

Obviously, the system can achieve this non-decaying state only if the time of mean flow
modification ¢, is less than the time needed to reach the viscous scale, t,;. . Estimation of £, is
difficult, because it involves strongly non-linear processes. An upper limit can however be
given by considering that the flattening comes only from the transfer of energy between the
mean flow and the turbulent motion. If the initial perturbation spectrum has a streamwise
component (streaks with k, = 0), then the turbulent energy growth appears already on the
linear phase and can, therefore, be described by Rapid-Distortion Theory [10]:

E—_—CIE(]O't, (6)

where C, is a numerical constant of order one, E,=v¢ is the initial energy of the
perturbation. Non-linear flattening occurs when the energy of the mean flow approaches
zero, or, in other words, when all initial mean-flow energy (cH)? is transferred to the
turbulence. The time required for this transfer, according to (6), is

H%g
= 5 -
CI'UO

(7

te

This is only an upper limit, because strong non-linear interactions tend to accelerate
energy exchanges between the mean flow and the turbulent motions. For example, the
transport effect due to the streamwise component, the defect mechanism of Dubrulle and
Zahn [1], or the secondary instability observed by Kreiss et al. [13] all accelerate energy
transfer and flattening of the mean profile. Experiments on plane Couette flow indeed
indicate that the transition to turbulence may be triggered by a defect mechanism [15]. If ¢,
is indeed an upper limit on the energy transfer time, we obtain a sufficient, but not necessary
condition for the existence of a self-sustained turbulent regime, via ¢, < t,;.. This translates
into

kyH v
A> -CWRG / . (8)

A slightly different approach should be used in case of spotwise initial perturbations. In
fact, when the fraction of k,~ 0 perturbation is negligible in the initial spectrum, the
turbulence growth cannot be described by the linear theory. Nazarenko and Zakharov [12]
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Fig. 1. - Critical amplitude in the Couette flow for spot (a)) and streak (b)) initial disturbances. The
dot-dashed line corresponds to the laminar/non-linear—growth transition (also found in experiments),
the dashed line to the non-linear-growth/turbulent transition. The axes values are only indicative,
since the constants C; and C, have been taken equal to 1.

show that a £2-growth appears, nonetheless, at the weakly non-linear stage:

E&t?
2’

E=Cg

(9

where C, is a numerical constant depending on the initial shape of the spectrum of
perturbations. By equating (9) to the total energy of the mean flow, (¢H)?, one obtains

k¥)! oH
by = 02—1/2 l a1 ] (10)
Yy ]
Condition ¢, < ¢, With #.,. corresponding to the spotwise perturbations reads
A>Cy Y4 (k}H)\/SRe /8, (11)

Conditions (8), (11) are stronger than the conditions of the non-linear instability (Re ~! and
Re '/ laws) provided Re > C; or Re > C3/*(k¥H)™!, which is in general satisfied.

We have summarized this situation in fig. 1, for both spot and streak disturbances.

The necessary and sufficient condition for self-sustained turbulence can be bounded below
by our set of conditions (5) and above by (8), (11). Since our bounds are not sharp, we are not
able to prove the existence of a transition regime, in which initial perturbations experience a
non-linear growth but decay eventually. It may, however, be possible to sharpen the bounds
derived in this letter by a finer study of the mechanisms involved.
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