
Physica D 142 (2000) 231–253

Dynamical modeling of sub-grid scales in 2D turbulence

Jean-Philippe Lavala,∗, Bérengère Dubrulleb,c, Sergey Nazarenkod,e

a CEA/DAPNIA/SAp L’Orme des Merisiers, 709, F-91191 Gif sur Yvette, France
b CNRS, URA 2052, CEA/DAPNIA/SAp L’Orme des Merisiers, 709, F-91191 Gif sur Yvette, France

c CNRS, URA 285, Observatoire Midi-Pyrénées, 14 av. E. Belin, F-31400 Toulouse, France
d Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

e Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Received 1 November 1999; received in revised form 1 February 2000; accepted 6 March 2000
Communicated by A.C. Newell

Abstract

We develop a new numerical method which treats resolved and sub-grid scales as two different fluid components evolving
according to their own dynamical equations. These two fluids are nonlinearly interacting and can be transformed one into
another when their scale becomes comparable to the grid size. Equations describing the two-fluid dynamics were rigorously
derived from Euler equations [B. Dubrulle, S. Nazarenko, Physica D 110 (1997) 123–138] and they do not involve any
adjustable parameters. The main assumption of such a derivation is that the large-scale vortices are so strong that they advect
the sub-grid scales as a passive scalar, and the interactions of small scales with small and intermediate scales can be neglected.
As a test for our numerical method, we performed numerical simulations of 2D turbulence with a spectral gap, and we found
a good agreement with analytical results obtained for this case by Nazarenko and Laval [Non-local 2D turbulence and passive
scalars in Batchelor’s regime, J. Fluid Mech., in press]. We used the two-fluid method to study three typical problems in
2D dynamics of incompressible fluids: decaying turbulence, vortex merger and forced turbulence. The two-fluid simulations
performed on at 1282 and 2562 resolution were compared with pseudo-spectral simulations using hyperviscosity performed
at the same and at much higher resolution. This comparison shows that performance of the two-fluid method is much better
than one of the pseudo-spectral method at the same resolution and comparable computational cost. The most significant
improvement is observed in modeling of the small-scale component, so that effective inertial interval increases by about two
decades compared to the high-resolution pseudo-spectral method. Using the two-fluid method, we demonstrated that thek−3

tail always exists for the energy spectrum, although its amplitude is slowly decreasing in decaying turbulence. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Many applications in fluid mechanics require so-
lutions of Navier–Stokes equations at high Reynolds
numbers. For flows encountered in aeronautics and en-
gineering, Reynolds numbers can easily reach 106. In
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astrophysics and geophysics they can be even larger.
Nowadays, direct numerical simulations (DNSs) on
most powerful computers do not reach such Reynolds
numbers. For pseudo-spectral methods the problem is
that one cannot avoid introducing dissipation even at
scales greater than the grid size. The reason for this is
a numerical instability which manifests itself in stag-
nation of energy in small scales and called bottle-neck
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instability. To dissipate this energy, a smoothly in-
creasing with wave number dissipation function has
to be introduced. To achieve high Reynolds numbers
such a dissipation function can be chosen to be of a
hyperviscosity type, i.e. a function which is steeper
than the real viscosity, but it cannot be made too steep
to avoid the bottle-neck instability. Among the vari-
ous alternatives to DNS is the large Eddy simulation
(LES). The idea of the LES is to compute only the
large scales and to model the feedback of small scales
on the large-scale dynamics. The LES approach is es-
pecially popular for computing 3D turbulence, where
DNS is practically impossible for high Reynolds num-
bers (see, e.g. [3] and references therein). Most of
the LES schemes, however, are based on phenomeno-
logical models for small-scale turbulence and con-
tain adjustable parameters. For 2D turbulence, an LES
method was proposed by Sadourny and Basdevant [6].

In the present paper, we implement and discuss a
new numerical method for 2D turbulence based on a
two-fluid model proposed recently by Dubrulle and
Nazarenko [1]. In this model, the large scales and
the small (sub-grid) scales are treated as two differ-
ent components (fluids) described by their own equa-
tions. These equations are rigorously derived from the
Navier–Stokes equations under the assumption that the
large scales produce much stronger velocity field than
the intermediate and small scales do. This underlying
assumption of the two-fluid method appears to be nat-
ural for 2D turbulence because of the energy conden-
sation in large vortices [4,5]. In spirit, the two-fluid
model is close to LES, because the small scales are
less than the grid size. The dynamical equations are
averaged over the small scales and involve only the
slow time and coordinate corresponding to the large
scales. However, the two-fluid model does not postu-
late small-scale turbulence but models it with a dynam-
ical equation which does not involve any adjustable
parameters. This model conserves both energy and en-
strophy, and describes accurately the non-local interac-
tion arising between well-separated scales. It was used
to give a simple analytical solution of the interaction
between a large-scale dipole vortex and a small-scale
turbulence [1], and to derive spectra of non-local 2D
turbulence [2].

Yet another related approach in numerical mod-
eling of turbulence, which is also based on velocity
decomposition into the large-scale and small-scale
components uses the concept of approximate iner-
tial manifolds stemming from the dynamical systems
theory [32]. This, essentially statistical, theory gives
a slaving law of the small scales as a function of
the large scales. Note that the small scales are not
slaved in the two-fluid method and they are treated
dynamically rather than statistically.

The main goal of this paper is to use the two-fluid
method in more realistic situations, where there is no
spectral gap separating the large and small scales. Jus-
tification of using the two-fluid model for distributions
without spectral gap is that intense vortices with the
size (in terms of velocity) much greater than the grid
cell give a dominant contribution into the dynamics
of small sub-grid scales, and intermediate scales may
be neglected in the sub-grid scale dynamics. In other
words, the sub-grid turbulence is non-local, and the
main contribution to the energy and enstrophy fluxes
in small-scale turbulence comes from non-local wave
number triads having one short leg and two long legs.
This situation is indeed observed in high-resolution
numerical computations of 2D turbulence [7–9]. To
avoid any confusion it is appropriate to remark here
that the 2D forced turbulence is indeed local for scales
larger than the forcing scale and therefore the−5

3 in-
verse cascade spectrum is observed. We emphasize,
however, that it becomes non-local in the enstrophy
cascade range at small scales and sub-grid scales in
particular. Non-locality assumption works even bet-
ter for decaying turbulence with no dissipation at low
wave numbers because the integral scale of turbu-
lence in this case can be as large as the computa-
tional box size at late stages. Of course, neglecting
local interactions of sub-grid scales is only an approx-
imation, but this is a much better approximation for
2D turbulence than neglecting the non-local interac-
tions which is done when using the traditional LES
approach. The non-locality of 2D turbulence and its
relation to the passive advection of small scales re-
sulting in k−3 energy spectrum and coherent struc-
tures responsible for a steeper spectrum at smaller
wave numbers was discussed in [10]. The passive
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advection of small scales is the main validity require-
ment for the RDT (rapid distortion theory) descrip-
tion in 2D. Note, however, that this advection is not
truly passive in our approach in that the small scales
affect the large scales through the averaged Reynolds
stresses, which are taken into account in the two-fluid
model.

During the non-local dynamics, the sub-grid energy
may not be conserved: it can be transferred to, or be
drawn from, the large-scale component. This energy
transfer to/from the large-scale component is taken
care of in the large-scale equation of the two fluid by
a term describing the feedback of the small scales. We
use a pseudo-spectral code to compute the large-scale
component and we use a particle-in-cell (PIC) method
to compute the small scales. Because there is no spec-
tral gap separating the two components, one needs
a procedure converting the large-scale fluid into the
small-scale one when its scale is approaching the grid
size. In turn, when the scale of the small-scale fluid is
getting larger than the grid size, one has to convert it
into the large-scale component. Such procedure of lo-
cal conversion of the large scales into the small scales
and back is done using a simplified model in order
to make the computations cost effective and this part
of our numerical method is therefore non-rigorous.
Thus, although the two-fluid equations are rigorously
derived under the non-locality condition, the whole
model (including the conversion between the two flu-
ids) is not rigorous and has to be tested via comparison
with high-resolution DNS.

In Section 2, we summarize the two-fluid model
and we describe our numerical method in Section 3.
In Section 4, we discuss some basic properties of the
sub-grid dynamics associated with the particle repre-
sentation. In Section 5, we consider situations where
the large and small scales are separated by a gap, and
test our numerical method by comparing with analyt-
ical results available for this case. Section 6 is cen-
tral for the present work. Here, we study three typical
problems of the 2D fluid dynamics, decaying turbu-
lence, vortex merger and forced turbulence, and com-
pare the results obtained with the two-fluid method
with results obtained by DNS performed at the same
and at much higher resolution. We discuss our results

and possible applications of our numerical method in
Section 7.

2. Two-fluid model

Consider a 2D incompressible inviscid fluid de-
scribed by the Euler equations

∂tω + div(vω) = 0, div v = 0, (1)

where ω = ω(r , t) = curlv is the vorticity. The
two-fluid model is derived under the assumption of
scale separation and weakness of turbulence compared
to the large scales,

u= uL + uS, ω = ωL + ωS

with uL � uS, λL � λS, (2)

whereλ is the characteristic scale and S and L label
the small-scale and large-scale components, respec-
tively. In this case, Eq. (1) can be decomposed into
two equations describing the evolution of the large
and small scales [1]. Large-scale component obeys the
Euler equation with an additional term describing the
influence of small scales,

∂TωL + (vL · ∇)ωL

+ 2
∫
(k × ∇)z (k · ∇)

k4
n

dk
(2π)2

= 0. (3)

Here, n(x, k, t) is the Wigner function of vorticity
which corresponds to a density of the small-scale en-
strophy in 4D space(x, k). It is defined in terms of
the small-scale vorticity as

n(x, k, t) =
∫

〈ωS,p+kωS,p−k〉 e2ip·x dp
(2π)2

. (4)

The symbol〈·〉 denotes an average over the fast time
corresponding to the small scales. The Wigner func-
tion is a very useful tool for describing interaction of
the separated scales in fluids and plasmas, see, e.g.
[1,11,12].

The equation for the small-scale component in-
volves n(x, k, t). It expresses the fact that total
small-scale enstrophy is conserved during the evolu-
tion,
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DTn= 0 with DT = ∂t + ẋ · ∇ + k̇ · ∂k,
ẋ = vL , k̇ = −(k · ∇)vL , (5)

where ∂k is the gradient in thek-space. The large
scales act on small scales via changing characteris-
tics of Eq. (5). Small scales in turn, react back on the
large scales via the interaction term in (3). The closed
system of nonlinearly coupled equations (3) and (5)
will be used in this paper as a basis for the two-fluid
numerical method described in the next section. Sim-
ple analytical solutions of these equations were found
for a vortex dipole propagating through turbulence [1]
and for the energy spectra of forced and decaying
small-scale turbulence [2]. These analytical solutions
will be used in the present paper as a reference for
testing the numerical method.

3. Numerical method for computing the two-fluid
equations

3.1. PIC method for the sub-grid fluid

The small-scale equation (5) is computed by a PIC
method which is often used for computing plasmas
[13]. This method was also used to solve equations
similar to (5) in the case of sound–vortex interaction
in an isentropic fluid [14]. The PIC method treats the
small-scale component as a large ensemble of par-
ticles having coordinatesxp(t) and momentakp(t),
p = 1,2, . . . , N . Each particle carries a small frac-
tion of the total enstrophy and moves along a trajec-
tory in (x, k) space computed according to the last
two equations of (5):

ẋp(t) = vL(t), k̇p(t) = −(kp(t) · ∇)vL(t). (6)

The two differential equations (6) are solved via a sta-
ble second-order Runge–Kutta scheme. The enstrophy
density functionn(x, k, t) is expressed as a sum of
individual particle contributions,

n(x, k, t) =
N∑
p=1

σp(t)Sx(x − xp(t))δ(k − kp(t)), (7)

whereσp(t) is the enstrophy of particlep andSx is
a function describing the particle shape. For such a

decomposition ofn(x, k, t), the first equation of (5)
implies that the enstrophyσp(t) of each particle does
not change during its motion:

σp(t) = σp(t0) = σp. (8)

We have chosen the following shape factor for parti-
cles:

Sx(x − xp)

=




4

(1− |x − xp|)
(1− |y − yp|)

12
if

{ |x − xp| < 1,

|y − yp| < 1,

0 otherwise, (9)

where constant1 is the particle “size”.
At very high wave numbers one has to “dissipate”

particles by removing them from the system in order
to keep the number of particles at a reasonable level
and maintain a low computational cost. As we will see
later, such dissipation is typically many orders of mag-
nitude smaller than that in any high-resolution DNS,
which allows us to obtain very wide inertial range
in our computations. The particle energy,σp/k2, be-
comes very small when the particle reaches high wave
numbers, which means that its initial energy has been
transferred to the large-scale fluid via the interaction
term. Thus, the particles at highk have no effect on
the overall dynamics and can be removed. To be pre-
cise, the error associated with removing the particles
is very small compared with the error introduced by
the other parts of the code. It is also easy to take into
account the real viscous dissipation at small scales by
reducing the particle strength in time as it was done in
[2]. In this paper, however, we will not be interested
to study the effect of viscosity.

3.2. Computing the large-scale fluid

The large-scale equation (3) can be solved in vari-
ous ways. We used periodic boundary conditions and
a pseudo-spectral method for the space variables. This
method is fast, accurate and easy to implement [15].
The time marching is done in the Fourier space with
a stable second-order Adams–Bashford scheme. A
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detailed description of the numerical procedure can
be found in [16].

The interaction term in (3) is computed in the fol-
lowing way:

2
∫
(k × ∇)z (k · ∇)

k4
n

dk
(2π)2

= 2{(∂yy − ∂xx)I1(x, t)

+∂xyI2(x, t)}, (10)

where

I1(x, t)=
∫

kxky

(k2
x + k2

y)
2
n(x, k, t)

dk
(2π)2

,

I2(x, t)=
∫

k2
x − k2

y

(k2
x + k2

y)
2
n(x, k, t)

dk
(2π)2

. (11)

Using (7), we have

I1(x, t)= 1

(2π)2

N∑
p=1

σp
kpx(t)kpy(t)

[kpx(t)2 + kpy(t)2]2

×Sx(x − xp(t)),

I2(x, t)= 1

(2π)2

N∑
p=1

σp
kpx(t)

2 − kpy(t)
2

[kpx(t)2 + kpy(t)2]2

×Sx(x − xp(t)). (12)

Because we solve our large-scale equation by a spec-
tral method, it is convenient to find the interaction
term (10) in Fourier space. In Fourier space, finding
the second derivatives with respect to the coordinates
will simply correspond to multiplication of Fourier
transforms ofI1(x, t) and I2(x, t) by corresponding
wave number components. We then apply a low-pass
filter to the interaction term in Fourier space to fil-
ter out the high wave number part of the interaction
term. The reason for doing so is the fact that the in-
teraction term is derived based on the assumption of
scale separation and therefore, it is incorrect for the
scales of order of the grid size. On the other hand,
the non-local nature of interaction implies smallness
of the interaction of sub-grid scales with intermediate
scales compared with their interaction with the large
scales, and, therefore retaining only the large-scale
part of the interaction term is justified. The interac-
tion term describes a force on the large-scale fluid
produced by the sub-grid component; it is generally

much less than the other terms in the large-scale equa-
tion. As we will see further, however, this term is very
important for conservation of the total energy of the
small-scale and large-scale fluids. On the other hand,
the interaction term is shown to be precisely equal to
zero at any time ifn(k) is isotropic at some particu-
lar moment of time [17], e.g. initially. It is interesting
that isotropy is not preserved during the evolution, but
the developing anisotropy remains of such a kind that
the interaction term is still zero at any time. This hap-
pens because the positive contribution of some wave
numbers is canceled by a negative contribution of the
other wave numbers. Note that an initially isotropic
spectrum develops into a spectrum with elliptic level
lines, and this is a very special kind of anisotropy
responsible for the above property.

3.3. Energy conservation

Because of the interaction between the large and
small scales, the energy can be transferred between the
large-scale and small-scale fluids. However, the total
energy of the two fluids is conserved [1]:

Etotal =EL + ES =
∫
u2

L dx + 1

(2π)2

∫
ndk dx

= const. (13)

In particle representation one can rewrite the
small-scale energy as

ES = 1

(2π)2

N∑
p=1

σp

k2
p

. (14)

It was shown in [17] that the energy of the small-scale
and large-scale components are conserved separately
if n depends only on the absolute value of the wave
vector at some moment of time. As we mentioned
above, the interaction term in the large-scale equation
is equal to zero in this case. We use the energy conser-
vation property as one of the tests in our computations.

3.4. Conversion of the two fluids one into another

In standard DNS approach using pseudo-spectral
methods, one has to introduce a dissipation at large
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wave numbers to avoid the bottle-neck instability, i.e.
piling up the spectrum near the cut-off wave number
kmax (corresponding to the grid scale, i.e. the smallest
scale resolved by the method). Using a steeper than
the regular kinematic viscosity dissipation function
(hyperviscosity) allows to suppress the bottle-neck
instability and at the same time avoids excessive
dissipation at larger scales.

In our method, we do not use any dissipation to
stabilize the pseudo-spectral scheme. Instead, we con-
vert the large-scale component into the sub-grid fluid
in the vicinity of the cut-off wave numberkmax. Thus,
the spectrum stagnation leading to the bottle-neck in-
stability is avoided by letting the small scales pass the
kmax barrier. Then, the sub-grid fluid is evolved ac-
cording to its own equation which is computed by the
PIC method. Note that one does not need any kind
of dissipation for stability of the PIC method, and,
therefore, one can compute situations with ultra-high
Reynolds number (which can be estimated based on
the particle removal scale).

The procedure of conversion from the large-scale
fluid into the sub-grid one consist of filtering the
large-scale vorticity field at wave numbers close to
the cut-off wave numberkmax. Then, we consider
the difference between the original and the filtered
large-scale spectra of enstrophy and create particles
with the same distribution in both coordinate and
wave number space. To do this, we first generate an
ensemble of particles, each carrying a small equal
amount of enstrophyσ and having a momentum
k such that their enstrophy distribution ink-space
is the same as the enstrophy spectrum of the con-
verted part of the large-scale component. Second,
we compute the difference between the unfiltered
and filtered large-scale component in thex-space,
and distribute the new particles randomly in the
x-space with the weight given by such a vorticity
distribution in the x-space. Created this way, the
particle ensemble has the same projections into the
x-space and into thek-space as would the Wigner
function of the converted large-scale vorticity. Di-
rect computation of the Wigner function would be
very costly, and the described conversion procedure
may be considered as the major approximation made

in our numerical model. Besides the enstrophy, the
energy is also conserved by our conversion proce-
dure. To achieve a good energy conservation, we
adjust the particlek-space distribution in several
iterations.

During the evolution, the wave number increases
for most of the particles. However, for some particles,
the wave number may become lower than its origi-
nal value and reach the scales which are well resolved
by the pseudo-spectral procedure. Because of the low
wave number, the energy of such particles is high and,
although there are only relatively few of them present
in the system, these particles play an important dy-
namical role. Thus, these low-wave number particles
must be converted back into the large-scale compo-
nent. In our method, this is done by increasing the
amplitude of the Fourier component of the large-scale
fluid atk corresponding to the particle’s wave number
in such a way that this increase would exactly reflect
the amount of the particle’s energy and enstrophy. We
leave the phase of this Fourier component unchanged
which makes it easier to conserve energy and enstro-
phy simultaneously during such a conversion proce-
dure.

3.5. Summary of runs

In Table 1, we summarize for reference different
runs which will be discussed in this paper. Below, we
describe the relevant details of these runs.
1. The initial stream function of the vortex dipole

in run 1 is ψ(x, y) = (0/4πR) ln((x2 + (y −
R)2)/(x2 + (y + R)2)), which is smoothed in
the coordinate space to avoid dealing with the
point-vortex singularities in the large-scale field.
In this run, the particles are initially located on the
straight linex = 0.

2. In all the runs starting with a random large-scale
vorticity the initial energy spectrum isE(k) =
Ckexp(−(k/k0)

2) with k0 = 4 andC = 1.
3. By writing the initial number of particles as a prod-

uct NxNk, we mean that we putNk particles at
each ofNx locations in the coordinate space, so
that there is a wave number distribution ofNk par-
ticles at each of these locations.
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Table 1
Description of runs discussed in this paper

Run Type/Grid Large-scale initial conditions and forcing Particle initial conditions and forcing Interaction term

Number Shapex Shapek

1 2F 1282 Dipole 8× 1000 On a line Isotropic Off
2 2F 1282 Random field 2000000 Uniform Gaussian Off
3 2F 1282 Random field 4096× 500 Uniform Isotropic Off
4 2F 1282 Random field 0 Forced atk = 1000 Off
5 2F 1282 Random field 16384× 36 Uniform Isotropic On
6 2F 1282 Same as run 5 16384× 36 Uniform Anisotropic On
7 2F 1282 Random field 0 On
8 2F 2562 Two vortices 0 On
9 2F 2562 No field, forced atk=40 0 On

10 HDNS 1282 Same as run 7 NA NA NA NA
11 HDNS 10242 Same as run 7 NA NA NA NA
12 HDNS 2562 Same as run 8 NA NA NA NA
13 HDNS 10242 Same as run 8 NA NA NA NA
14 HDNS 2562 Same as run 9 NA NA NA NA
15 HDNS 17282 Same as run 9 NA NA NA NA

4. In runs 1 and 5, by isotropic particle distribution,
we mean that the particle distribution is initially
concentrated on the circle|k| = kp = 1000 in
the wave number space as shown on the insert of
Fig. 16. In run 3 the particle distribution is initially
concentrated on the circle|k| = kp = 100. By
anisotropic initial distribution, we mean a distribu-
tion on an 8-shaped curve shown on the insert of
Fig. 17.

5. By HDNS we mean a pseudo-spectral method with
hyperviscosityk16.

4. Particle dynamics

Let us discuss some basic features of the small-scale
dynamics. In the coordinate space, the particles are
advected by the local velocity of the large-scale com-
ponent, see (5). Thus, particles can be mixed in the
coordinate space or can be trapped into the large-scale
vortices. For the stream function depicted in Fig. 1
(run 1 in Table 1), this property is illustrated in Fig. 2
showing different particle trajectories in the field of a
vortex dipole. We see that 1, 2 and 8 are not trapped,
whereas particles 3–5 and 7 are trapped and dragged
by vortices. Particle 1 is on a special trajectory includ-
ing a stagnation point, to which it is approaching at a
decreasing rate.

Equation for the wave number, i.e. the last equa-
tion in (5), is linear with respect tok. Therefore, its
solution for arbitrary initial wave numberq can be
represented as a linear combination of two solutions
obtained for just two different initial wave vectors
forming a basis [2,17]. An important consequence of
this fact is that the level lines of an initially isotropic
distribution of particlesn0(|q|, x) will be transformed
from circles to ellipses [1,2,17]. The rate at which

Fig. 1. Stream function of the vortex dipole moving to the right
with velocity u0 = 0/4πR (run 1).
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Fig. 2. Particle trajectories in the dipole field (run 1).

the ellipse aspect ratio is increasing depends on the
local strain of the large-scale field. Figs. 3 and 4 show
the time evolution of the ellipses ink-space for the
particles located on trajectories 3 and 4 in Fig. 2, re-
spectively. We see that initially isotropic distribution
becomes anisotropic much slower for the trajectory
4, because it is trapped near the vortex center, where
the large-scale motion is approximately just a uni-
form rotation (plus translation). Note that the ellipse

Fig. 3. Wave number distribution of 1000 particles which were
initially located at position 3 in the coordinate space. Initial circle
becomes an ellipse due to the large-scale shear (run 1).

Fig. 4. Wave number distribution of 1000 particles which were
initially located at position 4 in the coordinate space (run 1). The
circle is only weakly stretched because the shear at the vortex
center is less significant.

areas are not changing because of the incompress-
ibility of motion in k-space [2,17]. This serves as a
good test for the PIC code used in our simulations.
Conservation of the ellipse areas also means that a
wave number increase for some particles will always
be accompanied by a wave number decrease for other
particles if the initial particle distribution is isotropic.

The second example illustrating properties of the
particle dynamics is evolution of a particle ensem-
ble having initial Gaussian distribution in the wave
number space and uniform distribution in the co-
ordinate space (run 2 in Table 1). We take random
initial distribution of large-scale vorticity for this run.
In this simulation, we ignore small scales feedback
onto the large-scale fluid (the interaction term) and
turn-off the conversion between the small-scale and
large-scale components assuming that there is a spec-
tral gap between these two components. Note that
under these conditions dynamics of the small-scale
vorticity is identical to the passive scalar dynamics in
Batchelor’s regime (i.e. passive scalar advected by a
smooth velocity field).

For random-vorticity initial conditions, a chaotic
motion of particles in the coordinate space may be ex-
pected [18]. This behavior is illustrated in Figs. 5 and
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Fig. 5. Coordinates of 50 000 particles initially located in a strip
−π ≤ x ≤ −π + δx shown at timet = 5 (run 2).

6, which show the evolution of 50 000 particles in the
(x, y) space. Att = 0 these particles were in a narrow
strip in the(x, y) space

−π ≤ x ≤ −π + δx, −π ≤ y ≤ +π. (15)

However, particles cannot cross separatrix and remain

Fig. 6. Position of the same 50 000 particles as in Fig. 5 att = 25.
After a long time, particles are mixed by turbulence except at the
vortex cores (run 2).

Fig. 7. Initial large-scale stream function for run 2. The maximum
of the energy spectrum is atk ' 4.

outside the vortex cores, as clearly seen at late time
shown in Fig. 6. Initial large-scale stream function for
run 2 is shown in Fig. 7. The initial Gaussian distri-
bution of particles ink-space (run 2) is isotropic on
an average, but at a later time, smaller vortices in the
large-scale component have merged into bigger ones
(Fig. 8). (The initial Gaussian distribution is depicted
in Fig. 9). This creates some preferred directions of

Fig. 8. Large-scale stream function att = 50 for run 2. Small
vortices have merged into bigger ones and the large-scale field
has become essentially anisotropic.
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Fig. 9. Initial Gaussian distribution of particles in thek-space for
run 2.

the large-scale shear which are reflected in the parti-
cle distribution in thek-space (Fig. 10) because par-
ticle wave numbers tend to align with the large-scale
shear. Note also a significant spreading of the particle
distribution ink-space. If we plot the probability dis-
tribution of just one wave number component, e.g.kx ,
we see that the initial Gaussian profile (Fig. 11) turns
later into a distribution close to log-normal (Fig. 12).

Fig. 10. For run 2, density of particles in thek-space att = 50.
Note an anisotropy caused by existence of preferential directions
for the large-scale shear.

Fig. 11. For run 2, distribution of particles on thekx axis att = 0
(Gaussian distribution withσ = 100).

This result is in agreement with the analytical results
of Kraichnan [19] about statistics of derivative of a
passive scalar obtained with a rapidly varying veloc-
ity field (white noise, delta correlated in time). The
deviations with respect to the log-normal distribution
observed in the tail of the distribution can be traced
to correlations in the large-scale velocity field, which
induce a larger intermittency. Such result was also dis-

Fig. 12. For run 2, distribution of particles on thekx axis at
t = 50. The best fit with a log-normal distribution is shown with
a continuous line.
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cussed in [19], and can be quantified using the large
deviations theory (see, e.g. [20]).

5. Turbulence with a spectral gap

In this section, we continue to study the case when
there is a spectral gap between the large-scale and
small-scale components. Such a gap has been ob-
served, for example, in the spectrum of horizontal
velocity in the atmospheric boundary layer for pe-
riods between a few minutes and a few hours, un-
der special conditions [21]. Other situations where the
spectral gap is observed in nature were discussed in
[22], where an EDQNM (eddy damped quasi-normal
Markovian) approach was used to describe 3D turbu-
lence dynamics. For our purpose the spectral-gap case
is also important because there exist exact analytical
results which may be used to test our numerical model.

First, we will concentrate only on the small-scale
dynamics and consider decaying and forced small-scale
turbulence. In this part, the large-scale fluid will be
completely decoupled from the small-scale compo-
nent and computed without the interaction term and
without converting one fluid into another. This ap-
proach is valid for weak small scales which are well
separated from the large scales ink-space. To suppress
the bottle-neck instability, we will have to introduce
a hyperviscosity into the large-scale dynamics.

Second, we will consider stronger small scales and
narrower spectral gaps to study the feedback of the
small scales onto the large-scale fluid. We will use the
procedure of conversion between the components to
avoid using hyperviscosity in large scales and thereby
to improve the conservation of energy and enstrophy.
We will also take into account the interaction term for
computing the large-scale fluid. Both the conversion
procedure and the interaction term will be important,
because our main focus in this part will be on studying
the energy budget and transfer of energy between the
large-scale and small-scale fluids.

5.1. Decaying small-scale turbulence

Let us introduce the small-scale energy spectrum
which is obtained by integrating the density of the

particle energy over the angleθ (wherek = (kx, ky) =
(k cosθ, k sinθ)) and over thex-space:

Ê(k) =
∫
n(x, y, k, θ, t)

k2
k dθ dx dy, (16)

so that the total energy of the small-scale fluid is

ES =
∫
Ê(k)dk. (17)

Using the particle representation (7),Ê(k) can be writ-
ten as a sum of the individual particle energies:

Ê(k) = 1

dk

∑
k−dk/2<|kp |<k+dk/2

σp

kp(t)2
, (18)

where dk is a small number. dk � k, but large enough
for having many particles in the intervalk − 1

2dk <
|kp| < k + 1

2dk.
According to an asymptotical analytical solution

for decaying small-scale turbulence obtained in [2],
the small-scale spectrum, initially concentrated around
some scale|k| = kp, will tend to a power law shape,

Ê(k) ∝ k−2.

The−2 slope is predicted in a wave number range cen-
tered atkp, which is widening with time. Fig. 13 shows
the energy spectrum of freely decaying small-scale tur-
bulence obtained by numerical computation with ini-
tial distribution of small scales concentrated on a ring
in k-space,n ∝ δ(|k| − kp) with kp = 100 (run 3 in
Table 1). We see that slope−2 is indeed observed in
a widening range of wave numbers centered atkp =
100, whereas a steeper slope is observed for higher
wave numbers.

5.2. Forced small-scale turbulence

Consider now the case when particles are injected
at the circle|k| = kp = 1000 ink-space at a constant
rate (run 4 in Table 1). Then, formation of a stationary
spectrum is expected for the small-scale turbulence
non-locally interacting with the large-scale compo-
nent [2]. This spectrum has exponent−1 for wave
numbers less thankp and exponent−3 for |k| > kp.
The −1 range corresponds to a constant flux of the
small-scale energy to lower wave numbers, and the
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Fig. 13. Compensated energy spectrum of freely decaying
small-scale turbulence at three different moments of time obtained
in run 3. There is an initial spectral gap between large and small
scales in this simulation. Observe formation of ak−2 range widen-
ing around the initial wave numberkp = 100.

−3 range corresponds to the enstrophy flux. As noted
in [2], the spectral exponent for the non-local enstro-
phy flux spectrum is the same as in case of the local
cascade (i.e.−3), whereas the slope corresponding to
the non-local energy flux is different from the one cor-
responding to a local energy cascade (−1 versus−5

3).
In our numerical computations of forced small-scale

turbulence, we start with no particles and add 16 000
particles every 10 time steps (corresponding to a time
t = 2.5 × 10−3). The added particles have a uniform
distribution in the coordinate space and are distributed
on a circle with a radiuskp = 1000 in thek-space.
Fig. 14 shows the small-scale energy spectrum at
three different moments of time. At wave numbers
larger than the injection wave number, the spectrum
tends to thek−3 shape, and at wave numbers smaller
than kp, we observe formation of thek−1 spectrum,
which agrees with analytical results of Nazarenko and
Laval [2].

5.3. Interaction of the small-scale and large-scale
fluids

Now we would like to study the nonlinear feedback
of the small-scale component onto the large-scale one.

Fig. 14. Energy spectrum of small-scale turbulence forced at
kp = 1000 at three different times as obtained in run 4. Turbu-
lence is assumed to be strongly non-local in this case. Observe
formation of thek−1 spectrum which corresponds to an inverse
non-local flux of energy and thek−3 enstrophy flux spectrum
which extends over a very wide wave number range.

For this, we compute the two-fluid equations with both
the interaction term and conversion between the two
components turned on. In the simulations described
in this section, the minimal initial particle wave num-
ber is about 20 times greater than the smallest one of
the large scales, and the total particle energy is about
20% of the large-scale energy. Fig. 15 shows the evo-
lution of the mean square of the interaction term in
runs 5 and 6. We simulate decaying turbulence case
with random initial large scales and small scales dis-
tributed uniformly in the coordinate space with initial
k-space distribution on a circle shown on the insert of
Fig. 16 (run 5) or on an 8-shaped curve shown in the
insert of Fig. 17 (run 6). The principal difference in
these two situations is that, in one of them, the initial
spectrum of small scales is isotropic, whereas in the
other one, the small scales are essentially anisotropic.
It was shown analytically in [17] that the energy will
be conserved by both small-scale and large-scale com-
ponents independently of each other in case when the
initial small-scale spectrum is isotropic, whereas the
energy can be transferred between the components for
anisotropic initial spectra. Furthermore, it was shown
that the interaction term in the large-scale equation
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Fig. 15. Mean square of the interaction term as a function of time
for the case of initially isotropic small scales (run 5, dashed line)
and initially anisotropic small scales (run 6, solid line).

is identically equal to zero for all times if the initial
small-scale spectrum is isotropic ink-space and uni-
form in x-space.

Fig. 15 shows the evolution of the mean square of
the interaction term in runs 5 and 6. In the beginning,

Fig. 16. Variations in the small-scale and large-scale energies,
(1ES/ET) and (1EL/ET) in the case of initially isotropic small
scales (ET = EL + ES) (run 5). Insert shows the initial particle
distribution in the wave number space.

Fig. 17. Variations in the small-scale and large-scale energies,
(1ES/ET) and(1EL/ET) in the case of initially anisotropic small
scales (ET = EL + ES) (run 6). Insert shows the initial particle
distribution in the wave number space.

as expected, the interaction term is much stronger for
the anisotropic initial small-scale spectrum (run 6)
than for the isotropic one (run 5). However, fort >
0.2 the magnitude of the interaction terms becomes
the same order for both cases. This is because the
discretization inx- andk-space with a finite number
of particles makes the distribution in the “isotropic”
case to be slightly anisotropic, and the role of such an
anisotropy grows in time. Fig. 18 shows the large-scale
stream function att = 0.2 for run 6, and Fig. 19 shows
the interaction term as a function of coordinate for the
same run at the same time. We see that the maximum
of interaction is strongly correlated with position of
strong vortices in the large-scale field.

Fig. 16 shows the energy budget for the small and
large scales in run 5. As predicted [17], the energy
exchange is negligible at the beginning. On the other
hand, some energy exchange between the two fluids
appears at aboutt = 0.3, which is related with devi-
ations from perfect isotropy in the initial distribution,
as explained above. One can see that the exchanged
energy is very small compared to the total energy of
the system (<0.06%). For the simulation with initially
anisotropic small scales (run 6), the energy exchange
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Fig. 18. Stream function of the large-scale vorticity field att = 0.2
for run 6.

starts at a finite rate fromt = 0, see Fig. 17. As ex-
pected, the energy exchange is much greater than in
the isotropic case; it is about 2% of the total energy.
The error on the total energy conservation is<10% of
the energy exchanged.

Fig. 19. Interaction term describing the feedback of particles onto
the large-scale fluid as obtained in run 6 att = 0.2. Note a strong
correlation with positions of large vortices shown in Fig. 18.

6. The two-fluid model versus DNS

In this section, we concentrate on the main goal of
this paper, namely using the two-fluid method for solv-
ing several typical problems of the 2D fluid dynamics
without any spectral gap present in the system. In par-
ticular, we will test the performance of the two-fluid
numerical method by comparing it to pseudo-spectral
DNS with hyperviscosity (HDNS) at the same level of
resolution (and approximately same use of computing
resources) and at a much higher resolution HDNS. We
chose the following three test problems which are fre-
quently computed by other methods: vortex merger,
turbulence decay and forced turbulence.

6.1. Decaying turbulence

To simulate decaying 2D turbulence by the two-fluid
method, we start with a random initial large-scale
component having the energy spectrum shown in
Fig. 22 and with no sub-grid (particle) component
initially present in the system. Then, evolution of
the large-scale component will lead to formation of
a k−3 tail at high wave numbers corresponding to
a down-scale enstrophy cascade. At the time when
this tail reaches the cut-off wave numberkmax, some
part of the large-scale component starts being con-
verted into particles by the procedure described in
Section 3.4. Note that if we did not convert large
scales into particles nearkmax, we would observe an
accumulation of turbulence nearkmax, because no
dissipation (hyperviscosity) is used in the two-fluid
method to suppress the bottle-neck instability. Thus,
by converting the large scales into particles, we let the
enstrophy to pass thekmax barrier and to continue its
down-scale flux in the sub-grid fluid computed by the
PIC method. The energy budget of the large-scale and
small-scale components in this simulation is shown
in Fig. 20. The growth of the small-scale energy
and an equal energy decrease in large scales seen in
Fig. 20 for t < 5 corresponds to the conversion of
the large-scale fluid into particles when thek−3 tail
reacheskmax. Particles take over thek−3 energy dis-
tribution and continue it for about three decades more
in the sub-grid scale range, as seen in Fig. 23, which
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Fig. 20. For run 7, decaying turbulence: small-scale energy
ES/ET, variations in the large-scale energy1EL/ET and the error
(1EL + ES)/ET (run 7).

shows the wave number energy distribution for both
large-scale and small-scale components att = 40.

It is interesting that after initial growth associ-
ated with unsteady formation of thek−3 distribution,
the small scales transfer their energy back into the
large-scale component, see Fig. 20. Such a non-local
up-scale energy transfer proceeds with preservation of
thek−3 shape of the small-scale energy spectrum (the
amplitude of which will be of course decreasing). In
other words, the energy flux continues to be directed
up-scale even when the interaction becomes strongly
non-local and there is always ak−3 range associated
with a down-scale enstrophy flux. The spectral flux
of enstrophy slows down because of depletion of the
enstrophy reservoir in decaying turbulence, and this
corresponds to the decrease of the total amplitude of
thek−3 spectrum.

Fig. 20 shows also the change in the sum of the en-
ergies of the large-scale and small-scale components
associated with a numerical error. As we see, the en-
ergy non-conservation is very small compared to the
total energy of the system. It is also small enough for
enabling a reliable analysis of the energy exchanges
between the components. To illustrate the importance
of the interaction term for conservation of total en-
ergy, we performed a simulation of decaying turbu-

Fig. 21. Decaying turbulence with the interaction term switched
off: small-scale energyES/ET, variations in the large-scale en-
ergy1EL/ET and the error(1EL + ES)/ET (run 7 without the
interaction term).

lence by the two-fluid method with interaction term
switched off. The results for the energy budget in the
large and small scales and the numerical error in this
run are shown in Fig. 21. One can see that the numeri-
cal error is significantly greater in this case than in the
case with the interaction term taken into account, and
it very quickly becomes comparable to the exchanged
amount of energy. The initial large-scale energy spec-
trum for run 7 is shown in Fig. 22.

As a test for the two-fluid method, we performed
two HDNS using a pseudo-spectral method with hy-
perviscosity starting with identical initial conditions.
One of these simulations was performed at the same
resolution as the large-scale part of the two-fluid
method (1282) and it required comparable amount
of computing resources (typically about 1.5–2 times
greater than the CPU time). Another simulation was
performed at 10242 which requires much greater
computational power. Energy spectra obtained in
these two HDNS are plotted in Fig. 27 together with
the energy spectrum obtained in the two-fluid simu-
lation (sum of the large-scale and small-scale spec-
tra). One can see that the spectrum obtained by the
low-resolution HDNS is dissipated by hyperviscosity
at much larger scales than both spectra obtained by
the high-resolution HDNS and the two-fluid method.
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Fig. 22. The initial large-scale energy spectrum for run 7. There
are no particles att = 0.

The two-fluid method gives a spectrum which is very
close to the high-resolution HDNS until the scale
where the hyperviscous numerical dissipation makes
the HDNS spectrum decay. Furthermore, it contin-
ues continuously on slope−3 much further beyond
the hyperviscous scale making the enstrophy iner-
tial range about two decades wider than that in the
high-resolution HDNS, see Fig. 23. Thus, we see
that the 1282 two-fluid method appears to perform as
good as 10242 pseudo-spectral method or even better
in describing the small-scale turbulence spectra. It is
also important to note that the spectrum obtained by
the two-fluid simulations is clearly continuous at the
cut-off scalekmax = 42. Thus, there is a good match-
ing at the interface scale between the two components
which are computed by drastically different numer-
ical procedures. Finally, we compared our decaying
energy spectra with the “classical” self-similar law of
Batchelor [23] in all three cases. We did not obtain
a self-similar collapse of the energy spectra in any
of the three cases. This is in agreement with a recent
detailed numerical study of Bartello and Warn [24],
which indicates that Batchelor’s similarity hypothesis
fails to describe high-order moments of the vorticity
distribution. They attribute this failure to the existence
of a second rugged invariant, which can be either

Fig. 23. For run 7, energy spectra of the large-scale and sub-grid
(small-scale) fluids in decaying turbulence att = 40. The fluids
are converted one into another neark = 40, which corresponds to
the maximal resolved wave number in this simulation.

associated with the support of the vorticity density or
the amplitude of the strongest vortices.

From the point of view of LES, it is also impor-
tant to see whether a particular way of sub-grid scale
modeling helps to better describe dynamics of large
eddies. Figs. 24–26 show the large-scale vorticity field
obtained by the high-resolution HDNS (only 1282

modes corresponding to the large scales are shown),
low-resolution two-fluid method, and low-resolution
HDNS, respectively, att = 10. One can see that all
three pictures are very similar, so that it is not clear
if the large eddy dynamics is simulated better by the
two-fluid method than by the pseudo-spectral method
(Fig. 27) at equal resolution in this particular case.
Similar comparison is somewhat more conclusive in
the case of vortex merger problem discussed in the
next section.

6.2. Vortex merger

Simulation of merging of two vortices having the
same sign is a good test for our two-fluid model be-
cause we can compare both the characteristics of large
structures like the size and rotation speed of the final
vortex, and the small-scale component including vor-
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Fig. 24. The large-scale vorticity field in decaying turbulence at
t = 10 for HDNS 10242 (run 11). Only 1282 modes are shown
to retain the same range of scales as in Figs. 25 and 26.

ticity filaments. We chose the following initial vortic-
ity field representing the two vortices separated by a
distanceδ, and with individual vorticity distribution
[25]:

ω(r, θ) = 1

2
ω0

{
1 − tanh

[
r − R0

1

]}
. (19)

Fig. 25. The large-scale vorticity field in decaying turbulence at
t = 10 for a two-fluid simulation on the 1282 grid (run 7).

Fig. 26. The large-scale vorticity field in decaying turbulence at
t = 10 for HDNS on the 1282 grid (run 10).

In our simulations,R0 = 0.05× 2π , ω0 = 100,1 =
0.01 andδ = 0.15× 2π . The initial vorticity field is
shown in Fig. 28, and the corresponding energy spec-
trum is given in Fig. 29. As in the case of decaying
turbulence, we performed three simulations with the
same initial conditions: HDNS at 10242 and 2562 res-
olutions (pseudo-spectral method with hyperviscosity)

Fig. 27. Compensate energy spectra of decaying turbulence ob-
tained by HDNS 10242 (run 11, solid line), HDNS 1282 (run 10,
marked by+) and a two-fluid simulation on the 1282 grid (run
7, circles).
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Fig. 28. Initial vorticity field for the vortex merger problem, runs
8, 12 and 13.

and a two-fluid simulation at 2562 resolution, which
correspond to the runs 8, 12 and 13 in Table 1. Typi-
cal computing time on a Sun workstation is 6 days, 2
and 4 h for the high-resolution HDNS, low-resolution
HDNS and the two-fluid simulation, respectively. The
energy spectra obtained by these three simulations
are shown in Fig. 33. We see that the low-resolution
two-fluid simulation reproduces the result obtained by

Fig. 29. Initial energy spectrum in the vortex merger problem,
runs 8, 12 and 13.

a high-resolution HDNS very well for all wave num-
bers up to the numerical dissipation scale of the HDNS
method. In contrast, the HDNS performed at the same
resolution as the two-fluid simulation exhibits a spec-
tral decay at much lowerk because of the hyper-
viscosity and a lower cut-off wave number. Thus, at
least as far as the spectra are concerned, the results
obtained by the two-fluid method appear to be reli-
able even for the scales which are much less than the
cut-off scale of the high-resolution HDNS. This is re-
lated with almost exact enstrophy conservation built
in the two-fluid method, whereas the pseudo-spectral
methods must dissipate enstrophy via hyperviscosity
for their stability. Note that the spectrum is continuous
at the cut-offkmax = 85, which serves as a boundary
between the resolved and sub-grid fluids computed by
completely different numerical procedures.

Let us compare now results for the large-scale dy-
namics in real space obtained by the three different
simulations described above. Fig. 30 compares the re-
sults for the vorticity field in the central region which
is 1

16 of the total computation domain. For the 10242

results, we showed only 2562 modes corresponding
to the large-scale field. Filaments of positive vortic-
ity are well defined in the high-resolution HDNS. One
can see that these filaments are better defined in the
two-fluid 2562 simulation than for the HDNS per-
formed at the same resolution. One of the reasons
for this result is that excessive hyperviscosity dissi-
pates filaments in the 2562 HDNS. Another possibly
more important reason is that the particles produced
at high-gradient regions, associated with filaments, re-
main a part of the filamentary structure, because both
particles and the filaments are advected with the same
speed. Remaining on the filaments (see Fig. 32) these
particles produce a selective forcing of the large-scale
flow at the position of filaments via the interaction
term which acts to oppose the diffusion of filaments.
Note also that the orientation of the final vortex ob-
tained by the two-fluid method is closer to the 10242

simulation than the one obtained by the 2562 HDNS.
Using these differences in orientation and taking into
account that the vortex system has made about seven
turnovers by the time these differences are observed,
one can estimate the numerical error in the mean rota-
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Fig. 30. The large-scale vorticity for the vortex merger problem att = 1.5 as obtained in: (1) HDNS 10242 (run 13), two-fluid 2562

simulation (run 8), and (3) HDNS 2562 (run 12). Only 1
16 of the computational area is shown. We retained only 2562 modes in the figure

for HDNS 10242 in order to compare the large-scale features only.

tion speed as about 2% for the two-fluid method and
3% for the 2562 HDNS. One can conclude that the
two-fluid method does describe large-scale structures
better than the pseudo-spectral method at equal res-
olution, although these improvements are not as im-
pressive as in description of the small-scale field. In
particular, our method does not improve modeling of
the sharp edges of the coherent structures because it
tends to convert sharp vorticity gradients into particles
with partial loss of coherence. Hence, we can describe
the spectra much better than the higher momenta and
intermittency which is largely caused by the coherent
structures.

So far, we discussed the small-scale field only in
context of the energy spectra. On the other hand, par-
ticles are characterized by distributions in both wave
vector and coordinate space, and they contain much
richer information about the small-scale field than just
spectra. Ideally, the Wigner function describing the
particle distributions is invertible and one could re-
cover the small-scale field exactly based on the infor-
mation about the particle positions and wave vectors.
However to create particles, we did not compute di-
rectly the Wigner function, which would be too ex-
pensive, but used an approximate procedure described
in Section 3.4. Nevertheless, the information about the
small-scale field contained in particles, although ap-
proximate, does contain correlations between differ-
ent small-scale harmonics. To illustrate this point, we
reconstructed the small-scale vorticity field by adding

up the contributions of localized wavepackets centered
at the particle coordinatesxp and oscillating in space
according to the particle wave vectorskp. Here, we
take wavepackets having two main oscillations in the
direction ofkp and elongated in the transverse to the
kp direction. The resulting vorticity field for all par-
ticles with kp < 512 att = 1.5 is shown in Fig. 31,
and this corresponds to the particle locations shown

Fig. 31. For run 8, reconstruction of the small-scale vorticity in
the vortex merger problem by representing each particle as a
vorticity wavepacket and adding up the individual contributions.
Here, we considered only particles withkp < 512. Note a coherent
filamentary structure of the small-scale field.
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Fig. 32. For run 8, positions of the first 20 000 particles created
from the large-scale fluid in the vortex merger problem. Here
t = 1.5, as in Fig. 31.

in Fig. 32. One can see a very correlated filamentary
structure of the vorticity field obtained from the par-
ticle distribution.

Fig. 33. For runs 8, 12 and 13, compensated energy spectra in the vortex merger problem obtained by the HDNS 10242 (solid line),
HDNS 2562 (marked by+) and a two-fluid simulation on the 2562 grid (circles); runs 13, 12 and 8, respectively.

6.2.1. Forced turbulence
Now let us consider a situation where initially there

are no particles and no large-scale field. A force is
introduced by keeping the same level of energy for a
given wave number, in our caseE = 0.5 at kx = 40,
ky = 0. To obtain a stationary spectrum, a linear fric-
tion at large scale is introduced by the termDε =
t−1
d l−2

d ψ , whereld is the box length,td the characteris-
tic friction time, andψ the stream function. Note that
by introducing a large-scale friction, we are suppress-
ing, to certain extent, the energy condensation at the
largest scale, the process which is important for the
two-fluid model. Thus, this set-up provides a harder
test of performance for our method.

We perform simulations using the two-fluid method
and the pseudo-spectral method, both at 2562 reso-
lution (Fig. 33), and compare results of these two
runs (runs 9 and 14 in Table 1) with the results of
a high-resolution HDNS of Babiano et al. [26] who
used a 17282 pseudo-spectral method with hypervis-
cosity and the same forcing and large-scale friction as
described above (reproduced as run 15). In the case
of forced turbulence, the vorticity field is much less
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Fig. 34. Energy spectrum of turbulence forced atk = 40 which
are obtained by HDNS 17282 (run 15, solid line), HDNS 1282

(run 14, marked by+) and a two-fluid simulation on the 1282

grid (run 9, circles).

structured than in decaying turbulence or in the vor-
tex merger problem, and its images in real space do
not contain much information which could be used
to compare different methods. We will concentrate,
therefore, only on the energy spectra, which is shown
in Fig. 34. We see that the 2562 two-fluid simula-
tion gives a very close result to the one of the 17282

HDNS for both low and high wave numbers up to
the wave numbers where the numerical hyperviscos-
ity makes the HDNS spectrum decay. In contrast, the
spectrum obtained by the 2562 HDNS deviates from
the 17282 HDNS result not only in high wave num-
bers, but also in the lowk range. Again, one can ar-
gue that the enstrophy inertial interval in the two-fluid
simulation extends far beyond the cut-off scale of the
high-resolution HDNS method.

A slight deviation of the two-fluid simulation from
the 17282 HDNS is observed aroundk = 70. It is
not clear which one of these results is more precise
in this region. In the two-fluid result we see a tran-
sition from thek−3 spectrum at highk to a steeper
spectrum closer to the forcing scale. Such a behavior
agrees with observations made in [10], where thek−3

spectrum was attributed to the passively advected
and strained small vortices and the steeper spec-
trum near the forcing scale was linked to coherent
vortices.

Good performance of the two-fluid method in de-
scribing forced 2D turbulence confirms validity of the
assumption about the non-locality of interaction even
in the case when there is a large-scale dissipation
which is reducing, to certain extent, the energy con-
densation at the largest scale. This result is in a good
agreement with observation of a strong non-locality
of the enstrophy fluxes in forced turbulence with a
large-scale dissipation made by Borue [7], who used
a high-resolution pseudo-spectral method with hyper-
viscosity.

7. Conclusion

In this paper, we developed a two-fluid numerical
method which treats the resolved and sub-grid scales
as two different fluids which are nonlinearly interact-
ing with each other and can be converted one into an-
other near the minimal resolved scale. There are three
essential components of the two-fluid method. One of
them is the set of equations used to describe evolution
of each of the fluids. These equations were rigorously
derived in [1] under the assumption of non-locality of
interaction in small scales. The second ingredient of
the two-fluid model is a PIC scheme to compute the
small-scale sub-grid fluid. The last, but not the least,
important element of our method is the procedure of
conversion of one fluid into another.

By considering turbulence with a gap between large
and small scales and by comparing the results with
analytical results of Nazarenko and Laval [2], we in
fact selectively tested the second element, the PIC dis-
cretization of the small-scale field. Indeed, in this part
we did not question validity of the two-fluid equa-
tions (used to obtain both numerical and analytical re-
sults), and we minimized the effect of the conversion
procedure (not even using it for some computations)
by considering well-separated scales. Our numerical
results agree well with the analytical predictions of
Nazarenko and Laval [2], which proves effectiveness
of using the PIC method to simulate the small-scale
equation.

The first and the third components of the two-fluid
method were tested by juxtaposition of the results
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obtained by this method with results obtained by
HDNS performed at the same and at much higher res-
olution. We saw that the two-fluid method does very
well in describing the small-scale part of the spectrum,
which verifies the non-locality assumption underlying
the validity of the two-fluid equations. We emphasize
that our method does not involve any parameters which
could be adjusted to make the results look better in
comparison with HDNS. (Note thatkmax is not an ad-
justable parameter, it just determines accuracy of the
method. Like in usual HDNS, the higher thekmax the
more accurate the method is.) We tested the sensitivity
of our method with respect to the choice of the cut-off
wave number, and we found that sufficiently accurate
results may be obtained already for 1282 resolution.
In fact, we believe that the two-fluid method at a low
1282 and 2562 resolution describes many features of
the small-scale dynamics (e.g. spectra) even better
than HDNS at 10242 resolution. One of the impor-
tant features that persistently appears in the two-fluid
simulations of different problems is thek−3 tail in
the energy spectrum. We conclude that thek−3 tail is
generically present in most of the situations of nearly
inviscid 2D dynamics. We think that this tail is not
an artifact of our numerical method, whereas steeper
small-scale spectra obtained using HDNS are due to
the hyperviscous dissipation. It is interesting that the
k−3 tail persists for a very long time but its amplitude
decreases in decaying turbulence, which corresponds
to a decreasing enstrophy flux. In this case, an ini-
tial small-scale energy increase, associated with fast
formation of thek−3 tail, is followed by a decrease
corresponding to a slow up-scale energy transfer.

We also observed improvements in modeling large
scales with respect to the HDNS performed at the
same resolution, but these improvements were not as
impressive as the ones for the small scales. For ex-
ample, the difference of the two-fluid results from
the high-resolution HDNS for the final vortex orien-
tation in the vortex merger problem is smaller than
the deviations associated with the HDNS performed
at the same resolution, but these deviations are still
comparable. We attribute such deviations to the ap-
proximate nature of the conversion procedure which
brings about a certain arbitrariness in distributing par-

ticles obtained from the large-scale component. Some
of the small-scale structures are intrinsically a part of
a bigger large-scale vortex, in which case preserving
their coherence with this vortex is important. For ex-
ample, the small-scale structure associated with sharp
edges of a large vortex naturally arise near streamline
separatrices, and maintaining these structure precisely
at the separatrix location is important for preventing
a vorticity “leak” to the open streamline regions lo-
cated beyond the separatrix [27,28]. There is a room
for improvement of our conversion procedure which
would differentiate between the small scales that be-
long to a coherent vortex structure from the rest of
the small-scale vorticity. One possibility for such an
improvement is to perform conversion in the wavelet
space where the coherent structures are clearly distin-
guishable [29]. In this approach, the scale at which
the conversion is performed would vary with coordi-
nate (in contrast with a fixed scale used in this paper).
Another possibility is to use the “contour surgery”
method to describe the large-scale fluid [30]. In this
approach, the small-scale fluid would be created from
the long and thin filaments, which are cut-off by the
“surgery” procedure. One of course would have to de-
velop a procedure modeling the small scale feedback
onto the large vortices which would be suitable for
this method.

Finally, we would like to mention that there are
quite a few types of fluids where the use of the
two-fluid approach would be justified. Recall that
the underlying assumption of the two-fluid method is
that the small-scale dynamics is non-local and can be
described by linear equations. The small scales can
include not only vorticity, but also a wave component.
In fact, the first application of the two-fluid approach
was to compute the sound–vortex interaction problem
in which the small scales were short acoustic waves
(ultrasound) [14]. Further, the first derivation of the
two-fluid equations was done for theβ-plane model
for geophysical fluids where the interaction is typi-
cally non-local [12], but no numerical computation of
these equations has been done yet. The non-locality
assumption is likely to be valid for MHD turbulence,
and it was used by Kraichnan [31] to derive thek−3/2

energy spectrum of MHD turbulence. In this case, the
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small-scale (sub-grid) fluid would be composed of an
Alfven wave distribution.
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