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Abstract

Time evolution equation for the probability distribution function (PDF) is derived for system of weakly interacting w
dominated by the four-wave process. It is shown that a steady state for such system may correspond to strong inte
Numerical simulation performed on the surface gravity waves equations demonstrate an order of magnitude increase
bilities of long large-amplitude waves with respect to Rayleigh distribution.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

Wave turbulence (WT) is a common name for the fields of dispersive waves which are engaged
chastic weakly nonlinear interactions over a wide range of scales. Numerous examples of WT are f
oceans, atmospheres, plasmas and Bose–Einstein condensates[1–10]. For a long time, describing and pr
dicting the energy spectra was the only concern in WT theory. More recently, some attention was g
the study of turbulence intermittency. WT intermittency, or “burstiness” of the turbulent signal, was ob
experimentally and numerically and was attributed, as in most turbulent systems, to the presence o
ent structures. Examples include collapsing filaments in Bose–Einstein condensates with attractive p
[9,11], condensate quasi-solitons in systems with repulsive potentials[9,12,13], white caps of sea waves
small scales[14], freak ocean waves at larger scales[15]. Often, such coherent structures are intense but q
sparse so that in most of the space waves remain weakly nonlinear and mostly unaffected by thes
tures.
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Recent analysis of the higher order cumulants[16] showed that WT becomes strongly non-Gaussian at the s
length scale where it fails to be weakly nonlinear. In scale invariant systems, the ratio of nonlinear time to th
wave period grows as a power-law either in to small or toward large wavenumbers. When this growth co
with the cascade direction then one expects the WT breakdown if the inertial range is large enough. O
intermittency never occurs provided that turbulence is weak at the forcing scale[17]. Further, even if a significan
non-Gaussianity occurs, it does not in itself imply intermittency because PDF may remain, in principle,
same order as Gaussian in all of its parts. This motivates us to study PDFs in WT. Study of PDF in WT con
be traced back to as early as the work of Pierls[18], and, latter, in[19,20], who considered waves in anharmon
crystals, a special case of 3-wave systems. Recently, equations for multimode and one-mode PDFs whe
and analyzed for the general case of 3-wave systems[21,22]. PDFs of the three wave systems were also studie
explain entropy production in three-wave turbulence systems[23]. In the present Letter, we will be concerned w
the 4-wave case, and will derive the time evolution equation for the one-particle PDF, and will demonstr
its steady state solution may correspond to intermittency. We are also motivated by a puzzling numerical e
of a low-wavenumber intermittency in the system of water-surface gravity waves[25] whereas the analysis of[16]
predicts intermittency at high wave numbers only. Explaining this fact is the subject of this Letter and it cou
light on the phenomenon of freak waves[15].

The idea of the present Letter is based on the observation that even if the “hard” breakdown (as in[16]) does
not occur, there will always be a part of the PDF tail for which the amplitudes are too high for WT to work. S
“mild” breakdown will modify the PDF tail in a way that may correspond to intermittency. In fact, this case is
to study analytically because WT still works for most of the PDF. Consequently the wave breaking phenome
be modeled simply as a phenomenological cutoff of the PDF tail, consistent with the fact that no waves exi
the breaking amplitude. The wave breaking causes “leakage” and, therefore, a flux in theamplitude space which
is the key phenomenon leading to deviations from the Gaussian equilibrium and intermittency. Note an anal
the well-knownk-space fluxes (cascades) corresponding to Kolmogorov turbulence which is qualitatively di
from the thermodynamic equilibrium state. In this Letter we will derive an equation for the wave amplitud
and we will find its steady state solutions corresponding to the finite flux in theamplitude space. Consequently, w
will show that the resulting wave fields are intermittent at each wavenumber with an anomalously large pro
of the large-amplitude waves.

2. Definition of RPA fields

Previously, the random phase approximation (RPA) has typically assumed that the phases evolve mu
rapidly than the amplitudes and, therefore, there exist time intervals where the phases are random but the a
are deterministic[1]. However, numerical simulations indicate that the phase and the amplitude vary at th
time scale[10,13]. Thus, we need to generalize RPA to the case where both the phases and the amplitu
random quantities. Such generalization was done in[21,22,24]where 3-wave systems were considered. In
present Letter, we will be dealing with 4-wave systems.

Let us consider a wavefielda(x, t) in a periodic box of volumeV and let the Fourier transform of this field b
ak wherek ∈Zd andd is the space dimension. Later we take the large box limit in order to consider homoge
wave turbulence. Let us write complexak asak = Akψk whereAk ∈ R+ is the amplitude andψk ∈ S1 is a phase
factor (S1 being the unit circle in the complex plane). We say the wavefieldak is of theRPA type if all variables
in the set{Ak,ψk; k ∈ Zd} are statistically independent random variables andψk ’s are uniformly distributed on
S1. Defined this way RPA refers not only to the phase but also the amplitude statistics and therefore we s
slightly different reading of this acronym: “random phase and amplitude”.

The above properties are sufficient for our WT analysis and yet such fields may be strongly non-Ga
Indeed, RPA allows any shape of the PDF for amplitudesAk and, therefore, it will be a good tool for describin
intermittency.
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3. Weakly nonlinear evolution

Consider a weakly nonlinear wavefield dominated by the 4-wave interactions, e.g., the water-surface
waves[1,5,7,14], Langmuir waves in plasmas[1,3] and the waves described by the nonlinear Schroedinger e
tion [9]. In the finite box, we have the following Hamiltonian equations for the Fourier modes of this field,

iċl = ∂H
∂c̄l

, H =
∞∑

n=1

ωn|cn|2 + ε

2

∞∑
m,n,µ,ν=1

Wlm
µν c̄l c̄mcµcν,

wherecl is the wave action variable,l ∈ Zd , Wlα
µν ∼ 1 is an interaction coefficient,ωlα

µν = ωl + ωα − ωµ − ων , ωl

is the frequency of model andε � 1 is a nonlinearity parameter. We will rewrite this equation in the interac
representation, i.e.,ck = bke

−iωkt . Then

(1)iḃl = ε
∑
αµν

Wlα
µνb̄αbµbνe

iωlα
µν t δlα

µν,

wherebl is the wave action variable in the interaction representation. We are going expand inε and consider the
long-time behavior of a wave field, but in order to make such an analysis consistent we have to renorma
frequency of(1) as

(2)iȧl = ε
∑
αµν

Wlα
µνāαaµaνe

iω̃lα
µν t δlα

µν − Ωlal,

whereal = ble
iΩl t , Ωl = 2ε

∑
µ W

lµ
lµ |Aµ(0)|2 is the nonlinear frequency shift arising from self-interactions

ω̃lα
µν = ωlα

µν + Ωl + Ωα − Ωµ − Ων .
For small nonlinearity, the linear time-scale 2π/ω is a lot less than the nonlinear evolution time which (as w

be evident below, see, e.g.,(12)) is 2π/(ε2ω). Thus, to filter out fast oscillations at the wave period, let us see
the solution at an intermediate timeT such that 2π/ω � T � 2π/(ωε2). Now let us use a perturbation expansi
in small ε, al(T ) = a

(0)
l + εa

(1)
l + ε2a

(2)
l . Substituting this in(2) we get in the zeroth order a time independ

result,a(0)
l (T ) = al(0). For simplicity, we will writeal(0) = al , understanding that a quantity is taken atT = 0 if

its time argument is not mentioned explicitly. The first iteration of(2) gives

(3)a
(1)
l (T ) = −i

∑
αµν

Wlα
µνāαaµaνδ

lα
µν∆

lα
µν + i

Ωl

ε
alT ,

where

∆lα
µν ≡ ∆lα

µν(T ) = eiω̃lα
µνT − 1

iω̃lα
µν

.

Iterating one more time we get

a
(2)
l (T ) =

∑
αβµνvu

(
Wµν

αu Wlu
vβδµν

αu δlu
vβaαavaβāµāνE

(
ω̃

lµν
αvβ, ω̃lu

vβ

)−2Wαv
µν Wlu

vβδαv
µνδ

lu
vβ āαāuaµaνaβE

(
ω̃lαu

µνβ, ω̃lu
vβ

))

− Ω2
l al

T 2

2ε2
+ 1

ε

∑
αµν

(
ΩlW

lα
µνδ

lα
µνāαaµaνE

(
ω̃lα

µν,0
)−Wlα

µνδ
lα
µνāαaµaν(Ωα − 2Ων)

T∫
0

τeiω̃lα
µντ dτ

)

(4)with E(x,y) =
T∫

0

∆(x − y)eiyt dt.
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4. Evolution of statistics

We will now develop a statistical description via averaging over the initial fieldsak(0) which are taken to be o
the RPA type. Of course, to have a nontrivial description valid over the nonlinear evolution time, the field
remain of the RPA type over the nonlinear time in the leading order inε. The proof of this statement in the 3-wa
case was presented in[21,22]. Similar proof is possible in 4-wave case, and[22] contains an announcement
the derivation of 4-wave equation for the multi-mode PDF which allows to derive such a proof; the details
relevant analysis will be published separately.

In the present Letter, for the first time, we derive the time evolution equation for one-mode PDF. No
transition from the multi-mode PDF to one-mode PDF equation requires the amplitude independence
factorization of PDF). Proof of this factorization is possible but it is not subject of the present paper. Inste
Letter focuses on finding, for the first time, PDF solutions corresponding to intermittency.

Let us introduce a generating functionZ(λ, t) = 〈eλ|ak(t)|2〉, whereλ is a real parameter. Then PDF of the wa
intensitiess = |ak(t)|2 at eachk can be written as an inverse Laplace transform,P(s, t) = 〈δ(|ak(t)|2 − s)〉 =

1
2πi

∫ +i∞
−i∞ Z(λ, t)e−sλ dλ. For the one-point moments we have

(5)M
(p)
k ≡ 〈|ak|2p

〉 = 〈|a|2peλ|a|2〉∣∣
λ=0 = Zλ···λ|λ=0 =

∞∫
0

spP (s, t) ds,

wherep ∈N and subscriptλ means differentiation with respect toλ p times.
At t = T we have

Z(T ) = 〈
eλ|a(0)

k +εa
(1)
k +ε2a

(2)
k |2〉

=
〈
eλ|a(0)

k |2
〈
1+ λε

(
a

(1)
k ā

(0)
k + cc

)
λε2(∣∣a(1)

k

∣∣2 + (
a

(2)
k ā

(0)
k + cc

)) + λ2ε2

2

(
a

(1)
k ā

(0)
k + cc

)2
〉
ψ

〉
A

= Z(0) + ελ
〈
eλ|a(0)

k |2〈a(1)
k ā

(0)
k + cc

〉
ψ

〉
A

(6)+ ε2
〈〈(

λ + λ2A2)∣∣a(1)
k

∣∣2 + λ
(
a

(2)
k ā

(0)
k + cc

) + λ2

2

(
a

(1)2
k ā

(0)2
k + cc

)〉
ψ

〉
A

,

where cc stands for complex conjugate of the previous terms and〈· · ·〉ψ and〈· · ·〉A denote phase and amplitud
averaging respectively. Note that in RPA fields the phases and the amplitudes are statistically independe
these two averaging could be done independently. First let us substitutea

(1)
k anda

(2)
k from (3) and(4), respectively,

and perform the phase averaging. For the terms proportional toε we have〈
a

(1)
k ā

(0)
k

〉
ψ

= −i
∑
αµν

Wkα
µν 〈ākāαaµaν〉ψδkα

µν∆
kα
µν + iΩl

〈|ak|2
〉
T

(7)= −2i
∑
α

Wkα
kα A2

kA
2
α · T + iΩlA

2
kT ,

where we have used the fact that∆(0) = T and we have used the RPAs “Wick’s theorem”

〈ākāαaµaν〉ψ = A2
kA

2
α

(
δk
µδα

ν + δk
νδ

α
µ

)
.

We see from(7) that the choice

(8)Ωk = 2
∑
α

Wkα
kα A2

α

makes the contribution of〈a(1)
ā

(0)〉 terms to be equal to zero.
k k ψ
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We therefore obtain

(9)Z(T ) − Z(0) = λε2
〈〈

λ
∣∣a(1)

k

∣∣2(1+ λ|ak|2
) + a

(2)
k ā

(0)
k + ā

(2)
k a

(0)
k + +λ

2

((
ā

(0)
k a

(1)
k

)2 + cc
)〉

ψ

〉
A

,

where as an intermediate result we have〈
ā

(0)
k a

(2)
k

〉
ψ

= 2
∑
αµν

δkα
µν

∣∣Wkα
µν

∣∣2A2
k

(
A2

µA2
ν − 2A2

αA2
µ

)
E

(
0, ω̃kα

µν

)
and 〈∣∣ā(1)

k

∣∣2〉
ψ

=
∑
αµν

δkα
µν

∣∣Wkα
µν

∣∣2A2
αA2

µA2
ν

∣∣∆(
ω̃kα

µν

)∣∣2.
Here terms proportional toT 2 drop from〈ā(0)

k a
(2)
k 〉ψ and〈|ā(1)

k |2〉 because of the choice(8) of frequency renor-
malization. Furthermore,〈(

a
(1)
k ā

(0)
k

)2〉
ψ

= −2Wkk
kk A6

kT
2Ωk − A4

kΩ
2
k T 2 − 4

∑
α

(
Wkα

kα AkAαT
)2

.

To complete the derivation of the equation for the time evolution of the generating functionZ(T ) we have to
take a large box limit, which implies that sums will be replaced with integrals, the Kronecker deltas will be re
with Dirac’s deltas,δlα

mn → δαl
mn/V , where we introduced short-hand notation,δαl

mn = δ(kα + kl − km − kn). Then
(9) will still hold, but with

〈
ā

(0)
k a

(2)
k

〉
ψ

= 2
∫

d123δk1
23

∣∣Wk1
23

∣∣2A2
k

(
A2

2A
2
3 − 2A2

1A
2
2

)
E

(
0, ω̃k1

23

)
and 〈∣∣ā(1)

k

∣∣2〉
ψ

=
∫

d123δk1
23

∣∣Wk1
23

∣∣2A1A2A3
∣∣∆(

ω̃k1
23

)∣∣2.
We also have

(10)
〈(

a
(1)
k ā

(0)
k

)2〉
ψ

= 0,

because this terms will be 1/N times smaller than〈|ā(1)
k |2〉ψ and〈āka

(2)
k 〉ψ terms because it has one less summa

index. Therefore, it vanishes in theN → ∞ limit.
Further we take a largeT limit, and take into account that

lim
T →∞E(0, x) =

(
πδ(x) + iP

(
1

x

))
T ,

and

lim
T →∞

∣∣∆(x)
∣∣2 = 2πT δ(x)

(see, e.g.,[2]).
Finally we perform amplitude averaging, noticing that

∂Z

∂λ
= 〈|ak|2eλ|ak |2〉

A

to obtain

(11)Z(T ) = Z(0) + ε2T · (ληZ + (
λ2η − λγ

)
Zλ

)
.
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Approximating(Z(T ) − Z(0))/T by Ż, we have

(12)Ż = ληZ + (
λ2η − λnγ

)
Zλ,

where

ηk = 4πε2
∫ ∣∣Wk1

23

∣∣2δk1
23δ

(
ωk1

23

)
n1n2n3 d123,

γk = 8πε2
∫ ∣∣Wk1

23

∣∣2δk1
23δ

(
ωk3

12

)[
n1(n2 + n3) − n2n3

]
d123,

here wavenumbersk, k1, k2, k3 ∈Rd , δ’s now mean Diracδ-functions,n1,2,3 ≡ n(k1,2,3) andd123= dk1 dk2 dk3.
Differentiating(12)with respect toλ p times we get the evolution equation for the moments:

Ṁ
(p)
k = −pγkM

(p)
k + p2ηkM

(p−1)
k ,

which, forp = 1 gives the standard kinetic equation,ṅk = −γknk + ηk. First-order PDE(12) can be easily solve
by the method of characteristics. Its steady state solution is

Z = (1− λnk)
−1

which corresponds to the Gaussian values of momentaM(p) = p!np
k . However, these solutions are invalid at sm

λ and highp’s because large amplitudess = |a|2, for which nonlinearity is not weak, strongly contribute in the
cases. Due to the integral nature of definitions ofM(p) andZ with respect to thes = |a|2, the ranges of amplitude
where WT is applicable are mixed with, and contaminated by, the regions where WT fails. Thus, to clearly s
these regions it is better to work with quantities which are local ins = |a|2, in particular, the probability distributio
P(s). Taking the inverse Laplace transform of(12)we have

(13)Ṗ + ∂sF = 0,

whereF = −s(γ P + η∂sP ) is a probability flux in thes-space. Consider the steady state solutions,Ṗ = 0,

(14)−s(γ P + η∂sP ) = F = const.

Note that in the steady stateγ /η = nk which follows from kinetic equation. The general solution to(14) is

P = Phom+ Ppart,

where

Phom= constexp(−s/n),

is the general solution to the homogeneous equation (corresponding toF = 0) andPpart is a particular solution,

Ppart= −(F/η)Ei(s/n)exp(−s/n),

where Ei(x) is the integral exponential function.
At the tail of the PDF,s 
 nk , the solution can be represented as series in 1/s, Ppart= −F/(sγ )− ηF/(γ s)2 +

· · · . Thus, the leading order asymptotic of the finite-flux solution is 1/s which describes strong intermittency.
Note that if the weakly nonlinearity assumption was valid uniformly tos = ∞ then we would have to pu

F = 0 to ensure positivity ofP and the convergence of its normalization,
∫

P ds = 1. In this caseP = Phom =
nexp(−s/n) which is a pure Rayleigh distribution corresponding to the Gaussian wave field. However, W
proach fails for the amplitudess � snl for which the nonlinear time is of the same order or less than the linear
period and, therefore, we can expect a cut-off ofP(s) at s = s . An estimate based on the dynamical equation(1)
nl
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gives1 snl = ω/εWk2. This phenomenological cutoff can be viewed as a wave breaking process which do
allow wave amplitudes to exceed their critical value,P(s) = 0 for s > snl. Now the normalization condition ca
be satisfied for the finite-flux solutions. However, having a constant negative fluxF < 0 corresponds to a sourc
at s = snl which dictates the necessity of a sink for somes < snl to preserve the normalization ofP(s). Note
however that the probability sink does not have to correspond to any physical “removal” of waves with
amplitudes. The sink should be present solely because the probability is diluted due to acceptance of ne
bers withs = snl into the statistical ensemble. In this case, the sink must be proportional to the probabilit
taking into account the normalization condition, we can write a modified equation for the PDF in the pres
cutoff,

(15)Ṗ − ∂s(sγ P + sη∂sP ) = −F∗,

with F∗ = −P(snl)γ /snl. The general solution to this equation isP = [C − F∗ Ei(s/n − logs)/η]exp(−s/n),

there constantC is fixed by the normalization condition. This solution is close to the Rayleigh distribution i
PDF core,s ∼ n, and it has a 1/s tail atn � s < snl.

5. Discussion

We found that the WT intermittency shows as an anomalously high (∼ 1/s) probability of the large-amplitud
waves whereas at lower amplitudes distribution appears to be close to Rayleigh (∼ e−s/n) which corresponds to
Gaussian wave fields. We showed that wave breaking is essential for WT intermittency to be present in the
yet the details of wave breaking are not important. The role of wave breaking is just to ensure that no w
have amplitude greater than critical valuesnl. This simple condition leads to huge mathematical consequence
generates the flux solutions in the amplitude space and therefore creates the 1/s intermittency. On the other han
the amplitude of the 1/s tail is not prescribed by WT and will depend on a particular wave breaking mecha
in a particular system. However, some conclusions about the dependence of the tail amplitude on the
parameters can be reached using a dimensional arguments.

Consider the classical example of the gravity waves on the surface of deep water. The linear dispersion
is given byωk = √

gk, and the coefficient of nonlinear interactionWkα
µν is given in[1]. This system has two powe

law steady state solutions. First one is the spectrum corresponding to the direct cascade of energy toward h
numbers,nk ∝ k−4 [1,4]. Second one is the spectrum corresponding to the inverse cascade of wave action
the smallk values,nk ∝ k−23/6. In addition to the gravity constantg, the only quantity which determines the sta
of the system in the direct cascade range is the energy fluxP whereas in the inverse cascade range—the par
flux Q. The PDF tail strength can be characterized by its area which is a dimensionless number and, th
has to depend on the relevant dimensionless combinations in the direct and the inverse cascade ranges,P2/3k1/3/g

andQk/g, respectively. Thus, the PDF tail thickness grows withk but its length decreases until it complete
disappears atk ∼ knl (equal tog3/P2 andg/Q, respectively).

This effect is illustrated inFig. 1which shows PDFs obtained by numerical simulations of the dynamical e
tion for surface gravity waves on deep water forced at lowk’s and dissipated at highk’s. Pseudospectral numeric
method on a 256× 256 grid was used similar to that of[7,25–27].

At moderate wavenumber (k = 15kmin) one can see a PDF tail in the range 4nk < s < 10nk characterized
by an order of magnitude enhanced probabilities with respect to the Rayleigh distribution. This is an im
numerical result which shows that, consistent with our theory and contrary to common belief, wave turbu

1 This estimate assumes that if the wave amplitude at somek happened to be of the critical valuesnl then it will also be of similar value for
a range ofk’s of width k. In other words, strong nonlinearity widens thek-space correlation from zero (RPA value) tok (value for the coheren
structures involved in the wave breaking).
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Fig. 1. PDF of|ak |2 for k = 15kmin (thick curve) andk = 35kmin (thin curve) and their comparison with Rayleigh distribution (dotted lin
Amplitude s is normalized so that the two curves have the same slope ats = 0.

not completely Gaussian and its PDFs have strong tails. They correspond to strong intermittency, i.e., ano
large probability of large amplitudes for small wavenumbers.

Unfortunately the range ofs where PDF converged to a stable value in this experiment was not large e
to reachs 
 n values and, therefore, for an asymptotic scaling to develop. To increase this range a much
computing to gain good statistics of very rare events at the PDF tail is necessary, which we cannot perfo
our resources.

At a higher wavenumber (k = 35kmin) one can see that the large amplitude waves are less probable th
ones predicted by the Rayleigh distribution. This is because the wave breaking happens now closer to the
causing the PDF cut-off seen at the figure.

In this Letter we considered WT which is weak on average so that the wave breaking occurs only in t
tail, i.e., snl 
 n. It does not apply to the cases when, at some largek, the wave breaking may become so stro
that it occurs for most of the waves in the PDF core. These cases where predicted and discussed in[16], but their
statistics would be hard to describe analytically because of the strong nonlinearity.
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